scholarly journals The Component Test Facility: A National User Facility for Testing of High Temperature Gas-Cooled Reactor (HTGR) Components and Systems

Author(s):  
Vondell J. Balls ◽  
David S. Duncan ◽  
Stephanie L. Austad

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

Author(s):  
Jan P. van Ravenswaay ◽  
Jacques Holtzhausen ◽  
Jaco van der Merwe ◽  
Kobus Olivier ◽  
Riaan du Bruyn ◽  
...  

The Next Generation Nuclear Plant (NGNP) Project is a US-based initiative led by Idaho National Laboratories to demonstrate the viability of using High Temperature Gas-Cooled Reactor (HTGR) technology for the production of high temperature steam and/or heat for applications such as heavy oil recovery, process steam/cogeneration and hydrogen production. A key part of the NGNP Project is the development of a Component Test Facility (CTF) that will support the development of high temperature gas thermal-hydraulic technologies as applied in heat transport and heat transfer applications in HTGRs. These applications include, but are not limited to, primary and secondary coolants, direct cycle power conversion, co-generation, intermediate, secondary and tertiary heat transfer, demonstration of processes requiring high temperatures as well as testing of NGNP specific control, maintenance and inspection philosophies and techniques. The feasibility of the envisioned CTF as a development and testing platform for components and systems in support of the NGNP was evaluated. For components and systems to be integrated into the NGNP full scale or at least representative size tests need to be conducted at NGNP representative conditions, with regards to pressure, flow rate and temperature. Typical components to be tested in the CTF include heat exchangers, steam generators, circulators, valves and gas piping. The Design Data Needs (DDNs), Technology Readiness Levels (TRLs) as well as Design Readiness Levels (DRLs) prepared in the pre-conceptual design of the NGNP Project and the NGNP lifecycle requirements were used as inputs to establish the CTF Functional and Operating Requirements (F&ORs). The existing South African PBMR test facilities were evaluated to determine their current applicability or possible modifications to meet the F&ORs of the CTF. Three concepts were proposed and initial energy balances and layouts were developed. This paper will present the results of this CTF study and the ongoing efforts to establish the CTF.


2008 ◽  
Author(s):  
S. L. Austad ◽  
L. E. Guillen ◽  
D. S. Ferguson ◽  
B. L. Blakely ◽  
D. M. Pace ◽  
...  

2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


Author(s):  
Ihor S. Diakunchak ◽  
Greg R. Gaul ◽  
Gerry McQuiggan ◽  
Leslie R. Southall

This paper summarises achievements in the Siemens Westinghouse Advanced Turbine Systems (ATS) Program. The ATS Program, co-funded by the U.S. Department of Energy, Office of Fossil Energy, was a very successful multi-year (from 1992 to 2001) collaborative effort between government, industry and participating universities. The program goals were to develop technologies necessary for achieving significant gains in natural gas-fired power generation plant efficiency, a reduction in emissions, and a decrease in cost of electricity, while maintaining current state-of-the-art electricity generation systems’ reliability, availability, and maintainability levels. Siemens Westinghouse technology development concentrated on the following areas: aerodynamic design, combustion, heat transfer/cooling design, engine mechanical design, advanced alloys, advanced coating systems, and single crystal (SC) alloy casting development. Success was achieved in designing and full scale verification testing of a high pressure high efficiency compressor, airfoil clocking concept verification on a two stage turbine rig test, high temperature bond coat/TBC system development, and demonstrating feasibility of large SC turbine airfoil castings. The ATS program included successful completion of W501G engine development testing. This engine is the first step in the W501ATS engine introduction and incorporates many ATS technologies, such as closed-loop steam cooling, advanced compressor design, advanced sealing and high temperature materials and coatings.


Author(s):  
Paul S. Weitzel

Babcock & Wilcox Power Generation Group, Inc. (B&W) has received a competitively bid award from the United States (U.S.) Department of Energy to perform the preliminary front-end engineering design of an advanced ultra-supercritical (A-USC) steam superheater for a future A-USC component test program (ComTest) achieving 760C (1400F) steam temperature. The current award will provide the engineering data necessary for proceeding to detail engineering, manufacturing, construction and operation of a ComTest. The steam generator superheater would subsequently supply the steam to an A-USC intermediate pressure steam turbine. For this study the ComTest facility site is being considered at the Youngstown Thermal heating plant facility in Youngstown, Ohio. The ComTest program is important because it would place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide initial hands-on training experience. Preliminary fabrication, construction and commissioning plans are to be developed in the study. A follow-on project would eventually provide a means to exercise the complete supply chain events required to practice and refine the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants would then be able to transfer knowledge and recommendations to the industry. ComTest is conceived as firing natural gas in a separate standalone facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the U.S. Components at suitable scale in ComTest provide more assurance before applying them to a full size A-USC demonstration plant. The description of the pre-front-end engineering design study and current results will be presented.


Author(s):  
T. Conboy ◽  
J. Pasch ◽  
D. Fleming

The US Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application as it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc, Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle, and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle — a recuperated Brayton loop with a single turbine and compressor. However work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle.


2020 ◽  
Vol 117 (7) ◽  
pp. 3451-3460 ◽  
Author(s):  
Samuel Barak ◽  
Ramees K. Rahman ◽  
Sneha Neupane ◽  
Erik Ninnemann ◽  
Farhan Arafin ◽  
...  

Soot emissions in combustion are unwanted consequences of burning hydrocarbon fuels. The presence of soot during and following combustion processes is an indication of incomplete combustion and has several negative consequences including the emission of harmful particulates and increased operational costs. Efforts have been made to reduce soot production in combustion engines through utilizing oxygenated biofuels in lieu of traditional nonoxygenated feedstocks. The ongoing Co-Optimization of Fuels and Engines (Co-Optima) initiative from the US Department of Energy (DOE) is focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The Co-Optima program has identified a handful of biofuel compounds from a list of thousands of potential candidates. In this study, a shock tube was used to evaluate the performance of soot reduction of five high-performance biofuels downselected by the Co-Optima program. Current experiments were performed at test conditions between 1,700 and 2,100 K and 4 and 4.7 atm using shock tube and ultrafast, time-resolve laser absorption diagnostic techniques. The combination of shock heating and nonintrusive laser detection provides a state-of-the-art test platform for high-temperature soot formation under engine conditions. Soot reduction was found in ethanol, cyclopentanone, and methyl acetate; conversely, an α-diisobutylene and methyl furan produced more soot compared to the baseline over longer test times. For each biofuel, several reaction pathways that lead towards soot production were identified. The data collected in these experiments are valuable information for the future of renewable biofuel development and their applicability in engines.


2001 ◽  
Vol 123 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Rainer Tamme ◽  
Reiner Buck ◽  
Michael Epstein ◽  
Uriyel Fisher ◽  
Chemi Sugarmen

This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.


Author(s):  
Yongyong Wu ◽  
Cheng Ren ◽  
Rui Li ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

The effective thermal diffusivity and conductivity of pebble bed in the high temperature gas-cooled reactor (HTGR) are two vital parameters to determine the operating temperature and power in varisized reactors with the restriction of inherent safety. A high-temperature heat transfer test facility and its inverse method for processing experimental data are presented in this work. The effective thermal diffusivity as well as conductivity of pebble bed will be measured at temperature up to 1600 °C in the under-construction facility with the full-scale in radius. The inverse method gives a global optimal relationship between thermal diffusivity and temperature through those thermocouple values in the pebble bed facility, and the conductivity is obtained by conversion from diffusivity. Furthermore, the robustness and uncertainty analyses are also set forth here to illustrate the validity of the algorithm and the corresponding experiment. A brief experimental result of preliminary low-temperature test is also presented in this work.


Sign in / Sign up

Export Citation Format

Share Document