Simultaneous High-Speed Two-Color Thermometry and Laser-Induced Incandescence Soot Measurement in a Small-Bore Optical Engine Fueled With JP-8

Author(s):  
Kan Zha ◽  
Xin Yu ◽  
Marcis Jansons

In-cylinder soot measurements obtained with a high-speed two-color method are compared to those simultaneously determined by the laser-induced incandescence (LII) technique in a single-cylinder, optically-accessible diesel engine fueled with JP-8. A double injection strategy was chosen to reduce pressure rise rates during operation at light load (2 bar IMEP) conditions. Injection timing was optimized for peak efficiency, at which point sufficient soot was produced to provide ample signal for both optical diagnostic techniques. Application of the two-color method to a high-speed CMOS camera allows the crank-angle-resolved observation of soot temperature and soot optical depth (KL) evolution, while LII provides soot volume fraction distribution at a known axial location in the cylinder independent of combustion gas temperature. Comparison of soot KL and LII signal at various stages of combustion shows high spatially-averaged correlation of the two signals near TDC. The degree of correlation decreases as the piston bowl descends and the line-of-sight soot KL value increasingly includes soot volumes not in the path of the laser sheet, the location of which is fixed 6.5 mm below the fire deck. The correlation between the two parameters again increases during the late cycle, indicating that in the later phases of combustion soot occurs in the squish zone above the piston bowl. Spatial cross-correlation of the two signals is weak, but increases in the highly luminous period immediately following heat release and illustrating a high degree of soot stratification. Soot KL and temperature evolution over a cycle are presented, which show no indication of being affected by the LII laser fluence.

2016 ◽  
Vol 24 (26) ◽  
pp. 29547 ◽  
Author(s):  
Terrence R. Meyer ◽  
Benjamin R. Halls ◽  
Naibo Jiang ◽  
Mikhail N. Slipchenko ◽  
Sukesh Roy ◽  
...  

Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0°–360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


2020 ◽  
Vol 126 (12) ◽  
Author(s):  
Manu Mannazhi ◽  
Per-Erik Bengtsson

AbstractTwo-dimensional laser-induced incandescence (LII) measurements usually involve the use of a cylindrical lens to illuminate the planar region of interest. This creates a varying laser fluence and sheet width in the imaged flame region which could lead to large uncertainties in the quantification of the 2D LII signals into soot volume fraction distributions. To investigate these effects, 2D LII measurements using a wide range of laser pulse energies were performed on a premixed flat ethylene–air flame while employing a cylindrical lens to focus the laser sheet. Using shorter focal length of the focusing lens resulted in larger variation of the LII signal profiles across the flame. A heat – and – mass – transfer - based LII model was also used to simulate the measurements and good agreement was found. The ratio between focal length (FL) and image length (IL) was introduced as a useful parameter for estimating the bias in estimated soot volume fractions across the flame. The general recommendation is to maximize this FL/IL ratio in an experiment, which in practice means the use of a long focal length lens. Furthermore, the best choices of laser fluence and detection gate width are discussed based on results from these simulations.


Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0° - 360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Sai C. Yelishala ◽  
Ziyu Wang ◽  
Hameed Metghalchi ◽  
Yiannis A. Levendis ◽  
Kumaran Kannaiyan ◽  
...  

This experimental research examined the effect of CO2 as a diluent on the laminar burning speed of propane–air mixtures. Combustion took place at various CO2 concentrations (0–80%), different equivalence ratios (0.7<ϕ<1.2) and over a range of temperatures (298–420 K) and pressures (0.5–6.2 atm). The experiments were performed in a cylindrical constant volume chamber with a Z-shaped Schlieren system, coupled with a high-speed CMOS camera to capture the propagation of the flames at speeds up to 4000 frames per second. The flame stability of these mixtures at different pressures, equivalence ratios, and CO2 concentrations was also studied. Only laminar, spherical, and smooth flames were considered in measuring laminar burning speed. Pressure rise data as a function of time during the flame propagation were the primary input of the multishell thermodynamic model for measuring the laminar burning speed of propane-CO2-air mixtures. The laminar burning speed of such blends was observed to decrease with the addition of CO2 and to increase with the gas temperature. It was also noted that the laminar burning speed decreases with increasing pressure. The collected experimental data were compared with simulation data obtained via a steady one-dimensional (1D) laminar premixed flame code from Cantera, using a detailed H2/CO/C1–C4 kinetics model encompassing 111 species and 784 reactions.


1995 ◽  
Vol 34 (30) ◽  
pp. 7083 ◽  
Author(s):  
T. Ni ◽  
J. A. Pinson ◽  
S. Gupta ◽  
R. J. Santoro

Volume 4 ◽  
2004 ◽  
Author(s):  
Sean P. Kearney ◽  
Thomas W. Grasser ◽  
Steven J. Beresh

Filtered Rayleigh Scattering (FRS) is demonstrated in a premixed, sooting ethylene-air flame. In sooting flames, traditional laser-based temperature-imaging techniques such linear (unfiltered) Rayleigh scatting (LRS) and planar laser-induced fluorescence (PLIF) are rendered intractable due to intense elastic scattering interferences from in-flame soot. FRS partially overcomes this limitation by utilizing a molecular iodine filter in conjunction with an injection-seeded Nd:YAG laser, where the seeded laser output is tuned to line center of a strong iodine absorption transition. A significant portion of the Doppler-broadened molecular Rayleigh signal is then passed while intense soot scattering at the laser line is strongly absorbed. In this paper, we demonstrate the feasibility of FRS for sooting flame thermometry using a premixed, ethylene-air flat flame. We present filtered and unfiltered laser light-scattering images, FRS temperature data, and laser-induced incandescence (LII) measurements of soot volume fraction for fuel-air equivalence ratios of φ = 2.19 and 2.24. FRS-measured product temperatures for these flames are nominally 1500 K. The FRS temperature and image data are discussed in the context of the soot LII results and a preliminary estimate of the upper sooting limit for our FRS system of order 0.1 ppm volume fraction is obtained.


Sign in / Sign up

Export Citation Format

Share Document