scholarly journals Two-dimensional laser-induced incandescence for soot volume fraction measurements: issues in quantification due to laser beam focusing

2020 ◽  
Vol 126 (12) ◽  
Author(s):  
Manu Mannazhi ◽  
Per-Erik Bengtsson

AbstractTwo-dimensional laser-induced incandescence (LII) measurements usually involve the use of a cylindrical lens to illuminate the planar region of interest. This creates a varying laser fluence and sheet width in the imaged flame region which could lead to large uncertainties in the quantification of the 2D LII signals into soot volume fraction distributions. To investigate these effects, 2D LII measurements using a wide range of laser pulse energies were performed on a premixed flat ethylene–air flame while employing a cylindrical lens to focus the laser sheet. Using shorter focal length of the focusing lens resulted in larger variation of the LII signal profiles across the flame. A heat – and – mass – transfer - based LII model was also used to simulate the measurements and good agreement was found. The ratio between focal length (FL) and image length (IL) was introduced as a useful parameter for estimating the bias in estimated soot volume fractions across the flame. The general recommendation is to maximize this FL/IL ratio in an experiment, which in practice means the use of a long focal length lens. Furthermore, the best choices of laser fluence and detection gate width are discussed based on results from these simulations.

1995 ◽  
Vol 34 (30) ◽  
pp. 7083 ◽  
Author(s):  
T. Ni ◽  
J. A. Pinson ◽  
S. Gupta ◽  
R. J. Santoro

Author(s):  
Aritra Chakraborty ◽  
Satya R. Chakravarthy

This paper reports an investigation of soot formation in ethylene-air partially premixed flames over a wide range of premixedness. An axisymmetric co-flow configuration is chosen to establish partially premixed flames from the fully non-premixed to fully premixed conditions. Reducing the fuel flow rate as a percentage of the maximum from the core stream and supplying the same to the annular stream leads to stratification of the reactant concentrations. The thermal power, overall equivalence ratio, and the average velocity in the both streams are maintained constant under all conditions. The soot volume fraction is estimated by light attenuation method, and laser induced incandescence is performed to map the soot distribution in the flow field. The soot volume fraction is observed to exhibit a ‘S’-type trend as the conditions are traversed from near the premixed to the non-premixed regimes. That is, when traversing from the non-premixed to near-premixed regime, below 60% fuel flow rate in core, the soot volume fraction drops drastically. The onset of sooting in the partially premixed flames is clearly seen to be at the tip of the rich-premixed flame branch of their triple flame structure, which advances upstream towards the base of the flame as the premixing is reduced. The ‘S’-type variation is clearly the effect of partial premixing, more specifically due to the presence of the lean premixed flame branch of the triple flame. Laser induced incandescence intensities are insufficient to capture the upstream advance of the soot onset with decreased premixedness. So, a quick and inexpensive technique to isolate soot luminescence through flame imaging is presented in the paper involving quasi-simultaneous imaging with a 650 nm and a BG-3 filter using a normal color camera.


Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0°–360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


Author(s):  
Kan Zha ◽  
Xin Yu ◽  
Marcis Jansons

In-cylinder soot measurements obtained with a high-speed two-color method are compared to those simultaneously determined by the laser-induced incandescence (LII) technique in a single-cylinder, optically-accessible diesel engine fueled with JP-8. A double injection strategy was chosen to reduce pressure rise rates during operation at light load (2 bar IMEP) conditions. Injection timing was optimized for peak efficiency, at which point sufficient soot was produced to provide ample signal for both optical diagnostic techniques. Application of the two-color method to a high-speed CMOS camera allows the crank-angle-resolved observation of soot temperature and soot optical depth (KL) evolution, while LII provides soot volume fraction distribution at a known axial location in the cylinder independent of combustion gas temperature. Comparison of soot KL and LII signal at various stages of combustion shows high spatially-averaged correlation of the two signals near TDC. The degree of correlation decreases as the piston bowl descends and the line-of-sight soot KL value increasingly includes soot volumes not in the path of the laser sheet, the location of which is fixed 6.5 mm below the fire deck. The correlation between the two parameters again increases during the late cycle, indicating that in the later phases of combustion soot occurs in the squish zone above the piston bowl. Spatial cross-correlation of the two signals is weak, but increases in the highly luminous period immediately following heat release and illustrating a high degree of soot stratification. Soot KL and temperature evolution over a cycle are presented, which show no indication of being affected by the LII laser fluence.


2016 ◽  
Vol 24 (26) ◽  
pp. 29547 ◽  
Author(s):  
Terrence R. Meyer ◽  
Benjamin R. Halls ◽  
Naibo Jiang ◽  
Mikhail N. Slipchenko ◽  
Sukesh Roy ◽  
...  

Volume 4 ◽  
2004 ◽  
Author(s):  
Sean P. Kearney ◽  
Thomas W. Grasser ◽  
Steven J. Beresh

Filtered Rayleigh Scattering (FRS) is demonstrated in a premixed, sooting ethylene-air flame. In sooting flames, traditional laser-based temperature-imaging techniques such linear (unfiltered) Rayleigh scatting (LRS) and planar laser-induced fluorescence (PLIF) are rendered intractable due to intense elastic scattering interferences from in-flame soot. FRS partially overcomes this limitation by utilizing a molecular iodine filter in conjunction with an injection-seeded Nd:YAG laser, where the seeded laser output is tuned to line center of a strong iodine absorption transition. A significant portion of the Doppler-broadened molecular Rayleigh signal is then passed while intense soot scattering at the laser line is strongly absorbed. In this paper, we demonstrate the feasibility of FRS for sooting flame thermometry using a premixed, ethylene-air flat flame. We present filtered and unfiltered laser light-scattering images, FRS temperature data, and laser-induced incandescence (LII) measurements of soot volume fraction for fuel-air equivalence ratios of φ = 2.19 and 2.24. FRS-measured product temperatures for these flames are nominally 1500 K. The FRS temperature and image data are discussed in the context of the soot LII results and a preliminary estimate of the upper sooting limit for our FRS system of order 0.1 ppm volume fraction is obtained.


Sign in / Sign up

Export Citation Format

Share Document