Application of Continuous Thermodynamics Method to Fuel Droplet Evaporation

Author(s):  
Way Lee Cheng ◽  
Cai Shen ◽  
Chia-fon F. Lee

A finite diffusion droplet evaporation model for complex liquid mixture composed of different homogeneous groups is presented in this paper. Separate distribution functions are used to describe the composition of each homogeneous group in the mixture. Only a few parameters are required to describe the mixture. Quasi-steady assumption is applied in the determination of evaporation rates and heat flux to the droplet, and the effects of surface regression, finite diffusion and preferential vaporization of the mixture are included in the liquid phase equations using an effective properties approach. A novel approach was used to reduce the transport equations for the liquid phase to a set of ordinary differential equations. The proposed model is capable in capturing the vaporization characteristics of complex liquid mixtures.

2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


Author(s):  
Mark Morris ◽  
James Mohr ◽  
Esteban Ortiz ◽  
Steven Englebretson

Abstract Determination of metal bridging failures on plastic encapsulated devices is difficult due to the metal etching effects that occur while removing many of the plastic mold compounds. Typically, the acids used to remove the encapsulation are corrosive to the metals that are found within the device. Thus, decapsulation can result in removal of the failure mechanism. Mechanical techniques are often not successful due to damage that results in destruction of the die and failure mechanism. This paper discusses a novel approach to these types of failures using a silicon etch and a backside evaluation. The desirable characteristics of the technique would be to remove the silicon and leave typical device metals unaffected. It would also be preferable that the device passivation and oxides not be etched so that the failure location is not disturbed. The use of Tetramethylammonium Hydroxide (TMAH), was found to fit these prerequisites. The technique was tested on clip attached Schottky diodes that exhibited resistive shorting. The use of the TMAH technique was successful at exposing thin solder bridges that extruded over the edge of the die resulting in failure.


2014 ◽  
Vol 10 ◽  
pp. 95-101
Author(s):  
A.S. Topolnikov

The paper presents the results of theoretical modeling of joined movement of pump rods and plunger pump and multiphase flow in a well for determination of dynamic loads on the polished rod of pumping unit. The specificity of the proposed model is the possibility of taking into account for complications in rod pump operating, such as leakage in valve steam, presence of gas and emulsion, incorrect fitting of plunger inside the cylinder pump. The satisfactory agreement of results of the model simulation with filed measurements are obtained.


2019 ◽  
Vol 20 (5) ◽  
pp. 390-400 ◽  
Author(s):  
Nabil N. AL-Hashimi ◽  
Amjad H. El-Sheikh ◽  
Rania F. Qawariq ◽  
Majed H. Shtaiwi ◽  
Rowan AlEjielat

Background: The efficient analytical method for the analysis of nonsteroidal antiinflammatory drugs (NSAIDs) in a biological fluid is important for determining the toxicological aspects of such long-term used therapies. Methods: In the present work, multi-walled carbon nanotubes reinforced into a hollow fiber by chitosan sol-gel assisted-solid/ liquid phase microextraction (MWCNTs-HF-CA-SPME) method followed by the high-performance liquid chromatography-diode array detection (HPLC–DAD) was developed for the determination of three NSAIDs, ketoprofen, diclofenac, and ibuprofen in human urine samples. MWCNTs with various dimensions were characterized by various analytical techniques. The extraction device was prepared by immobilizing the MWCNTs in the pores of 2.5 cm microtube via chitosan sol-gel assisted technology while the lumen of the microtube was filled with few microliters of 1-octanol with two ends sealed. The extraction device was operated by direct immersion in the sample solution. Results: The main factors influencing the extraction efficiency of the selected NSAIDs have been examined. The method showed good linearity R2 ≥ 0.997 with RSDs from 1.1 to 12.3%. The limits of detection (LODs) were 2.633, 2.035 and 2.386 µg L-1, for ketoprofen, diclofenac, and ibuprofen, respectively. The developed method demonstrated a satisfactory result for the determination of selected drugs in patient urine samples and comparable results against reference methods. Conclusion: The method is simple, sensitive and can be considered as an alternative for clinical laboratory analysis of selected drugs.


2008 ◽  
Vol 31 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Meihua Liu ◽  
Bin Qiu ◽  
Xia Jin ◽  
Lan Zhang ◽  
Xi Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document