Poison Build-up and Performance Degradation of an Oxidation Catalyst in 2-Stroke Natural Gas Engine Exhaust

Author(s):  
Marc E. Baumgardner ◽  
Daniel B. Olsen

Due to current and future exhaust emissions regulations, oxidation catalysts are increasingly being added to the exhaust streams of large-bore, 2-stroke, natural gas engines. Such catalysts have been found to have a limited operational lifetime, primarily due to chemical (i.e. catalyst poisoning) and mechanical fouling resulting from the carry-over of lubrication oil from the cylinders. It is critical for users and catalyst developers to understand the nature and rate of catalyst deactivation under these circumstances. This study examines the degradation of an exhaust oxidation catalyst on a large-bore, 2-stroke, lean-burn, natural gas field engine over the course of 2 years. Specifically this work examines the process by which the catalyst was aged and tested and presents a timeline of catalyst degradation under commercially relevant circumstances. The catalyst was aged in the field for 2 month intervals in the exhaust slipstream of a GMVH-12 engine and intermittently brought back to the Colorado State Engines and Energy Conversion Laboratory for both engine testing and catalyst surface analysis. Engine testing consisted of measuring catalyst reduction efficiency as a function of temperature as well as the determination of the light-off temperature for several exhaust components. The catalyst surface was analyzed via SEM/EDS and XPS techniques to examine the location and rate of poison deposition. After 2 years on-line the catalyst light-off temperature had increased ∼55°F (31°C) and ∼34 wt% poisons (S, P, Zn) were built up on the catalyst surface, both of which represent significant catalyst deactivation.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Marc E. Baumgardner ◽  
Daniel B. Olsen

Due to current and future exhaust emissions regulations, oxidation catalysts are increasingly being added to the exhaust streams of large-bore, two-stroke, natural gas engines. Such catalysts have a limited operational lifetime, primarily due to chemical (i.e., catalyst poisoning) and mechanical fouling resulting from the carry-over of lubrication oil from the cylinders. It is critical for users and catalyst developers to understand the nature and rate of catalyst deactivation under these circumstances. This study examines the degradation of an exhaust oxidation catalyst on a large-bore, two-stroke, lean-burn, natural gas field engine over the course of 2 years. Specifically, this work examines the process by which the catalyst was aged and tested and presents a timeline of catalyst degradation under commercially relevant circumstances. The catalyst was aged in the field for 2-month intervals in the exhaust slipstream of a GMVH-12 engine and intermittently brought back to Colorado State University for both engine testing and catalyst surface analysis. Engine testing consisted of measuring catalyst reduction efficiency as a function of temperature as well as the determination of the light-off temperature for several exhaust components. The catalyst surface was analyzed via scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques to examine the location and rate of poison deposition. After 2 years online, the catalyst light-off temperature had increased ∼55 °F (31 °C) and ∼34 wt % poisons (S, P, Zn) were built up on the catalyst surface, both of which represent significant catalyst deactivation.


Author(s):  
Michael H. McMillian ◽  
Steven D. Woodruff ◽  
Steven W. Richardson ◽  
Dustin L. McIntyre

Evermore demanding market and legislative pressures require stationary lean-burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. Contemporary ignition systems, more specifically spark plug performance and durability, suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. This paper presents a discussion of the need for an improved ignition source for advanced stationary natural gas engines and introduces laser spark ignition as a potential solution to that need. Recent laser spark ignition engine testing with natural gas fuel including NOx mapping is discussed. A prototype laser system in constructed and tested and the results are discussed and solutions provided for improving the laser system output pulse energy and pulse characteristics.


Author(s):  
Dustin L. McIntyre ◽  
Steven D. Woodruff ◽  
Michael H. McMillian ◽  
Steven W. Richardson ◽  
Mridul Gautam

To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.


2020 ◽  
Vol 59 (34) ◽  
pp. 14423-14428 ◽  
Author(s):  
Deniz Zengel ◽  
Pirmin Koch ◽  
Bentolhoda Torkashvand ◽  
Jan‐Dierk Grunwaldt ◽  
Maria Casapu ◽  
...  

2020 ◽  
pp. 146808742097775
Author(s):  
Ziqing Zhao ◽  
Zhi Wang ◽  
Yunliang Qi ◽  
Kaiyuan Cai ◽  
Fubai Li

To explore a suitable combustion strategy for natural gas engines using jet ignition, lean burn with air dilution, stoichiometric burn with EGR dilution and lean burn with EGR dilution were investigated in a single-cylinder natural gas engine, and the performances of two kinds of jet ignition technology, passive jet ignition (PJI) and active jet ignition (AJI), were compared. In the study of lean burn with air dilution strategy, the results showed that AJI could extend the lean limit of excess air ratio (λ) to 2.1, which was significantly higher than PJI’s 1.6. In addition, the highest indicated thermal efficiency (ITE) of AJI was shown 2% (in absolute value) more than that of PJI. Although a decrease of NOx emission was observed with increasing λ in the air dilution strategy, THC and CO emissions increased. Stoichiometric burn with EGR was proved to be less effective, which can only be applied in a limited operation range and had less flexibility. However, in contrast to the strategy of stoichiometric burn with EGR, the strategy of lean burn with EGR showed a much better applicability, and the highest ITE could achieve 45%, which was even higher than that of lean burn with air dilution. Compared with the most efficient points of lean burn with pure air dilution, the lean burn with EGR dilution could reduce 78% THC under IMEP = 1.2 MPa and 12% CO under IMEP = 0.4 MPa. From an overall view of the combustion and emission performances under both low and high loads, the optimum λ would be from 1.4 to 1.6 for the strategy of lean burn with EGR dilution.


Author(s):  
Thierry Leprince ◽  
Joe Aleixo ◽  
Kamal Chowdhury ◽  
Mojghan Naseri ◽  
Shazan Williams

Distributed power generation is an efficient method for reducing CO2 emissions through the elimination of transmission losses. Co-generation has similar benefits with higher thermal efficiency. Natural gas engines are very popular for these applications. Unfortunately, these engines emit significant levels of methane, which is a greenhouse gas. Reduction of methane emissions would greatly improve the environment and provide greenhouse gas emissions credits. The exhaust temperature downstream of the turbocharger in a natural gas engine is typically below 500°C. At these temperatures, methane is difficult to oxidize with current oxidation catalysts. It would be a much better option to install the oxidation catalyst before the turbocharger where temperatures are 100–150°C higher. Pressures upstream of the turbocharger are higher than downstream and also affect catalyst conversion efficiencies. Misfiring events are common in natural gas engines. During misfiring events, the catalyst will see a sudden increase in hydrocarbon (methane). When this pulse of hydrocarbon hits the catalyst, it will be oxidized and generate a large exotherm which could lead to catalyst failure (mechanical and/or chemical). This issue is critical for a pre-turbo catalyst: 1) Mechanical failure of the catalyst could lead to catastrophic turbocharger failure, a result of the turbine blades being damaged. 2) Misfiring with catalyst installed before the turbocharger is more likely to ignite the methane pulse because of the higher temperatures in this location. High exotherms from ignition could negatively affect catalyst performance. Through careful catalyst design, one can minimize this risk and this paper will address these issues.


Sign in / Sign up

Export Citation Format

Share Document