Use of a Thermodynamic Cycle Simulation to Identify Fundamental Thermodynamic Factors of NOx Formation in a Natural Gas Engine

Author(s):  
Kevin L. Wallace ◽  
Jerald A. Caton ◽  
Timothy J. Jacobs

Abstract Natural gas pipelines form a vital part of the energy infrastructure of the United States. In order to overcome head losses in moving the natural gas from one area of the country to another, large compressors are needed to pressurize the gas. For decades, the most efficient and cost-effective method of compressing the gas has been through the use of integral compressor engines. Pipeline companies have great financial incentive to continue using these engines, but increasingly stringent emissions regulations threaten their continued operation. In this study, the above problem was addressed by developing a zero-dimensional thermodynamic cycle simulation to predict NOx emissions for a large bore, single cylinder, naturally aspirated, 2-stroke, natural gas engine. Excellent agreement was obtained between experimental measurements and simulated predictions of the average exhaust NOx concentration. Once the simulation was validated by experimental data, a sensitivity analysis was conducted to determine the response of NOx emissions to changes in three factors: trapped equivalence ratio (TER), burned gas fraction (xb), and stuffing box temperature (SBT). This study sought to identify the fundamental thermodynamic reasons that NOx varied with each factor, and to quantify their respective effects. It was found that changes in each factor effected linear changes in the combustion temperatures, which effected linear changes in the rate constant of the first reaction in the extended Zeldovich mechanism, which effected exponential changes in the NOx emissions. TER and SBT were shown to be directly related to NOx, while xb was shown to be inversely related to NOx.

2018 ◽  
Author(s):  
Ian Smith ◽  
James Chiu ◽  
Gordon Bartley ◽  
Eugene Jimenez ◽  
Thomas Briggs ◽  
...  

Author(s):  
Daniel B. Olsen ◽  
Ryan K. Palmer ◽  
Charles E. Mitchell

Formaldehyde emissions from stationary natural gas engines are regulated in the United States, as mandated by the 1990 Clean Air Act Amendments. This work aims to advance the understanding of formaldehyde formation in large bore (>36 cm) natural gas engines. Formaldehyde formation in a large bore natural gas engine is modeled utilizing computational fluid dynamics and chemical kinetics. The top land crevice volume is believed to play an important role in the formation mechanisms of engine-out formaldehyde. This work focuses specifically on the top land crevice volume in the Cooper-Bessemer LSVB large bore 4-stroke cycle natural gas engine. Chemical kinetic modeling predicts that the top land crevice volume is responsible for the formation of 22 ppm of engine-out formaldehyde. Based on a raw exhaust concentration of 80 ppm, this constitutes about 27% of engine-out formaldehyde. Simplifying assumptions made for the chemical kinetic modeling are validated using computational fluid dynamics. Computational fluid dynamic analysis provided confirmation of crevice volume mass discharge timing. It also provided detailed pressure, temperature and velocity profiles within the top land crevice volume at various crank angle degrees.


2011 ◽  
Vol 383-390 ◽  
pp. 6085-6090
Author(s):  
Xiao Na Sun ◽  
Hong Guang Zhang ◽  
Xin Wang ◽  
Dao Jing Wang ◽  
Guo Yong Zheng ◽  
...  

The effects of spark advance angle on combustion and emission characteristics of a compressed natural gas engine have been investigated experimentally in this paper. The experimental data was conducted under various excessive air coefficient conditions using an electronic ignition system developed self-dependently. The results show that the peak cylinder pressure and peak rate of pressure rise ascends with the increase of spark advance angle in a certain extent, and their corresponding location are advanced. The CO emission keeps almost the same as the spark advance angle varies in the overall mode range. The HC and NOx emissions ascend with the increase of spark advance angle under the condition that excessive air coefficient is near the theoretical value. Under the lean-burn condition, the HC and NOx emissions are almost the same while the spark advance angle varies.


Author(s):  
Jim Tassitano ◽  
James E. Parks

Large natural gas engines are durable and cost-effective generators of power for distributed energy applications. Fuel efficiency is an important aspect of distributed generation since operating costs associated with fuel consumption are the major component of energy cost on a life-cycle basis; furthermore, higher fuel efficiency results in lower CO2 emissions. Leaner operation of natural gas engines can result in improved fuel efficiency; however, engine operation becomes challenging at leaner air-to-fuel ratios due to several factors. One factor in combustion control is ignition. At lean air-fuel mixtures, reliable and repeatable ignition is necessary to maintain consistent power production from the engine, and spark plug quality and durability play an important role in reliability of ignition. Here research of a novel spark plug design for lean natural gas engines is presented. The spark plug is an annular gap spark plug with a permanent magnet that produces a magnetic field that forces the spark to rotate during spark discharge. The rotating arc spark plug (RASP) has the potential to improve ignition system reliability and durability. In the study presented here, the RASP plug was operated in a small natural gas engine, and combustion stability (measured by the coefficient of variation of indicated mean effective pressure (IMEP)) was measured as a function of air-to-fuel ratio to characterize the ignition performance at lean mixtures. Comparisons were made to a standard J-plug spark plug.


Sign in / Sign up

Export Citation Format

Share Document