Commercial Spent Nuclear Fuel Integrity During Long-Term Dry Storage

Author(s):  
Leroy Stewart ◽  
Mikal A. McKinnon

Abstract The United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management conducted spent nuclear fuel integrity and cask performance tests from 1984–1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). Between 1994 and 1998, DOE also initiated a Spent Fuel Behavior Project that involved enhanced surveillance, monitoring, and gas-sampling activities for intact fuel in a GNS CASTOR V/21 cask and for consolidated fuel in a Sierra Nuclear VSC-17 cask. The results of these series of tests are reported in this paper. Presently, DOE is involved in a cooperative project to perform destructive evaluations of fuel rods that have been stored in the CASTOR V/21 cask. The results of those evaluations are presented elsewhere in these proceedings in a paper entitled “Examination of Spent PWR Fuel Rods after 15 years in Dry Storage”.

MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 991-1003 ◽  
Author(s):  
Evaristo J. Bonano ◽  
Elena A. Kalinina ◽  
Peter N. Swift

ABSTRACTCurrent practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.


Author(s):  
Jack Law ◽  
Dean Peterman ◽  
Cathy Riddle ◽  
David Meikrantz ◽  
Terry Todd

The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tertoctylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.


1995 ◽  
Vol 412 ◽  
Author(s):  
R. L. Sindelar ◽  
H. B. Peacock ◽  
P. S. Lam ◽  
N. C. Iyer ◽  
M. R. Louthan ◽  
...  

AbstractAn engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the United States Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding.The aluminum-clad research reactor fuels are predominantly highly-enriched aluminumuranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200°C. The results of laboratoryscale corrosion tests indicate that this fuel could be stored under air up to 200°C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200°C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air.


Author(s):  
Mikal A. McKinnon ◽  
Leroy Stewart

Abstract Research studies by the Electric Power Research Institute (EPRI) established the technical and operational requirements necessary to enable the onsite cask-to-cask dry transfer of spent nuclear fuel. Use of the dry transfer system has the potential to permit shutdown reactor sites to decommission pools and provide the capability of transferring assemblies from storage casks or small transportation casks to sealed transportable canisters. Following an evaluation by the Department of Energy (DOE) and the National Academy of Sciences, a cooperative program was established between DOE and EPRI, which led to the cost-shared design of a dry transfer system (DTS). EPRI used Transnuclear, Inc., of Hawthorne, New York, to design the DTS in accordance with the technical and quality assurance requirements of the code of Federal Regulations, Title 10, Part 72 (10CFR72). EPRI delivered the final design report to DOE in 1995 and the DTS topical safety analysis report (TSAR) in 1996. DOE submitted the TSAR to the United States Nuclear Regulatory Commission (NRC) for review under 10CFR72 and requested that the NRC staff evaluate the TSAR and issue a Safety Evaluation Report (SER) that could be used and referenced by an applicant seeking a site-specific license for the construction and operation of a DTS. DOE also initiated a cold demonstration of major subsystem prototypes in 1996. After careful assessment, the NRC agreed that the DTS concept has merit. However, because the TSAR was not site-specific and was lacking some detailed information required for a complete review, the NRC decided to issue an Assessment Report (AR) rather than a SER. This was issued in November 2000. Additional information that must be included in a future site-specific Safety Analysis Report for the DTS is identified in the AR. The DTS consists of three major sections: a Preparation Area, a Lower Access Area, and a Transfer Confinement Area. The Preparation Area is a sheet metal building where casks are prepared for loading, unloading, or shipment. The Preparation Area adjoins the Lower Access Area and is separated from the Lower Access Area by a large shielded door. The Lower Access Area and Transfer Confinement Area are contained within concrete walls approximately three feet thick. These are the areas where the casks are located and where the fuel is moved during transfer operations. A floor containing two portals separates the Lower Access Area and the Transfer Confinement Area. The casks are located below the floor, and the fuel transfer operation occurs above the floor. The cold demonstration of the DTS was successfully conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) as a cooperative effort between the DOE and EPRI. The cold demonstration was limited to the fuel handling equipment, the cask lid handling equipment, and the cask interface system. The demonstration included recovery operations associated with loss of power or off-normal events. The demonstration did not include cask receiving and lid handling; cask transport and lifting; vacuum/inerting/leak test; canister welding; decontamination; heating, ventilation, and air conditioning; and radiation monitoring. The demonstration test was designed to deliberately challenge the system and determine whether any specific system operation could adversely impact or jeopardize the operation or safety of any other function or system. All known interlocks were challenged. As in all new systems, there were lessons learned during the operation of the system and a few minor modifications made to ease operations. System modifications were subsequently demonstrated. The demonstration showed that the system operated as expected and provided times for normal fuel transfer operations. The demonstration also showed that recovery could be made from off-normal events.


Author(s):  
Donald Wayne Lewis

In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a “Monitored Retrievable Storage” facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE’s goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility.


Author(s):  
Nicholas Klymyshyn ◽  
Pavlo Ivanusa ◽  
Kevin Kadooka ◽  
Casey Spitz

Abstract In 2017, the United States Department of Energy (DOE) collaborated with Spanish and Korean organizations to perform a multimodal transportation test to measure shock and vibration loads imparted to used nuclear fuel (UNF) assemblies. This test used real fuel assembly components containing surrogate fuel mass to approximate the response characteristics of real, irradiated used nuclear fuel. Pacific Northwest National Laboratory was part of the test team and used the data collected during this test to validate numerical models needed to predict the response of real used nuclear fuel in other transportation configurations. This paper summarizes the modeling work and identifies lessons learned related to the modeling and analysis methodology. The modeling includes railcar dynamics using the NUCARS software code and explicit dynamic finite element modeling of used nuclear fuel cladding in LS-DYNA. The NUCARS models were validated against railcar dynamics data collected during captive track testing at the Federal Railroad Administration’s Transportation Technology Center in Pueblo, CO. The LS-DYNA models of the fuel cladding were validated against strain gage data collected throughout the test campaign. One of the key results of this work was an assessment of fuel cladding fatigue, and the methods used to calculate fatigue are detailed in this paper. The validated models and analysis methodologies described in this paper will be applied to evaluate future UNF transportation systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Young-Hwan Kim ◽  
Yung-Zun Cho ◽  
Jin-Mok Hur

We are developing a practical-scale mechanical decladder that can slit nuclear spent fuel rod-cuts (hulls + pellets) on the order of several tens of kgf of heavy metal/batch to supply UO2 pellets to a voloxidation process. The mechanical decladder is used for separating and recovering nuclear fuel material from the cladding tube by horizontally slitting the cladding tube of a fuel rod. The Korea Atomic Energy Research Institute (KAERI) is improving the performance of the mechanical decladder to increase the recovery rate of pellets from spent fuel rods. However, because actual nuclear spent fuel is dangerously toxic, we need to develop simulated spent fuel rods for continuous experiments with mechanical decladders. We describe procedures to develop both simulated cladding tubes and simulated fuel rod (with physical properties similar to those of spent nuclear fuel). Performance tests were carried out to evaluate the decladding ability of the mechanical decladder using two types of simulated fuel (simulated tube + brass pellets and zircaloy-4 tube + simulated ceramic fuel rod). The simulated tube was developed for analyzing the slitting characteristics of the cross section of the spent fuel cladding tube. Simulated ceramic fuel rod (with mechanical properties similar to the pellets of actual PWR spent fuel) was produced to ensure that the mechanical decladder could slit real PWR spent fuel. We used castable powder pellets that simulate the compressive stress of the real spent UO2 pellet. The production criteria for simulated pellets with compressive stresses similar to those of actual spent fuel were determined, and the castables were inserted into zircaloy-4 tubes and sintered to produce the simulated fuel rod. To investigate the slitting characteristics of the simulated ceramic fuel rod, a verification experiment was performed using a mechanical decladder.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Shadwan M. M. Esmail ◽  
Jae Hak Cheong

In the planning and management of the interim storage of spent nuclear fuel, the technical and economic parameters that are involved have a significant role in increasing the efficiency of the storage system. Optimal parameters will reduce the total economic costs for countries embarking on nuclear energy, such as the UAE. This study evaluated the design performance and economic feasibility of various structures and schedules, to determine an optimal combination of parameters for the management of spent nuclear fuel. With the introduction of various storage technology arrangements and expected costs per unit for the storage system design, we evaluated eight major scenarios, each with a cost analysis based on technological and economic issues. We executed a number of calculations based on the use of these storage technologies, and considered their investment costs. These calculations, which were aligned with the net present value approach and conducted using MS Project and MATLAB software programs, considered the capacities of the spent fuel pools and the amount of spent nuclear fuel (SNF) that will be transferred to dry storage facilities. As soon as they sufficiently cool, the spent nuclear fuel is to be stored in a pool storage facility. The results show that applying a centralized dry storage (CDS) system strategy is not an economically feasible solution, compared with using a permanent disposal facility (PDF) (unless the variable investment cost is reduced or changed). The optimal strategy involves operating a spent fuel pool island (SFPI) storage after the first 20 years of the start of the permanent shutdown of the reactor. After 20 years, the spent fuel is then transferred to a PDF. This strategy also results in a 20.9% to 26.1% reduction in the total cost compared with those of the other strategies. The total cost of the proposed strategy is approximately 4,307 million USD. The duration of the fuel storage and the investment cost, particularly the variable investment cost, directly affect the choice of facility storage.


Author(s):  
Spencer D. Snow ◽  
D. Keith Morton ◽  
Tommy E. Rahl ◽  
Robert K. Blandford ◽  
Thomas J. Hill

The National Spent Nuclear Fuel Program (NSNFP) at the Idaho National Engineering and Environmental Laboratory (INEEL) prepared four representative Department of Energy (DOE) spent nuclear fuel (SNF) canisters for the purpose of drop testing. The first two canisters represented a modified 24-inch diameter standardized DOE SNF canister and the second two canisters represented the Hanford Multi-Canister Overpack (MCO). The modified canisters and internals were constructed and assembled at the INEEL. The MCO internal weights were fabricated at the INEEL and assembled into two MCOs at Hanford and later shipped to the INEEL for drop test preparation. Drop testing of these four canisters was completed in August 2004 at Sandia National Laboratories. The modified canisters were dropped from 30 feet onto a flat, essentially unyielding surface, with the canisters oriented at 45 degrees and 70 degrees off-vertical at impact. One representative MCO was dropped from 23 feet onto the same flat surface, oriented vertically at impact. The second representative MCO was dropped onto the flat surface from 2 feet oriented at 60 degrees off-vertical. These drop heights and orientations were chosen to meet or exceed the Yucca Mountain repository drop criteria. This paper discusses the comparison of deformations between the actual dropped canisters and those predicted by pre-drop and limited post-drop finite element evaluations performed using ABAQUS/Explicit. Post-drop containment of all four canisters, demonstrated by way of helium leak testing, is also discussed.


Author(s):  
D. Keith Morton ◽  
Spencer D. Snow ◽  
Tom E. Rahl ◽  
Tom J. Hill ◽  
Richard P. Morissette

The Department of Energy (DOE) has developed a set of containers for the handling, interim storage, transportation, and disposal in the national repository of DOE spent nuclear fuel (SNF). This container design, referred to as the standardized DOE SNF canister or standardized canister, was developed by the Department’s National Spent Nuclear Fuel Program (NSNFP) working in conjunction with the Office of Civilian Radioactive Waste Management (OCRWM) and the DOE spent fuel sites. This canister had to have a standardized design yet be capable of accepting virtually all of the DOE SNF, be placed in a variety of storage and transportation systems, and still be acceptable to the repository. Since specific design details regarding the storage, transportation, and repository disposal of DOE SNF were not finalized, the NSNFP recognized the necessity to specify a complete DOE SNF canister design. This allowed other evaluations of canister performance and design to proceed as well as providing standardized canister users adequate information to proceed with their work. This paper is an update of a paper [1] presented to the 1999 American Society of Mechanical Engineers (ASME) Pressure Vessels and Piping (PVP) Conference. It discusses recent progress achieved in various areas to enhance acceptance of this canister not only by the DOE complex but also fabricators and regulatory agencies.


Sign in / Sign up

Export Citation Format

Share Document