Decontamination and Provenance Tracking

Author(s):  
David Bradbury ◽  
George R. Elder ◽  
John C. Ritchie ◽  
Robert G. Ward

Decommissioning of retired nuclear plants and facilities demands the proper management of the process, both for economic reasons and for retaining public confidence in the continued use of nuclear power for electricity generation. There are significant potential benefits, both economic and environmental, in recycling materials from retired nuclear facilities for new uses rather than disposing of them as radioactive waste. Although it is technically possible to decontaminate many retired nuclear components to reduce contamination levels to below those appropriate for free release into the public domain, there is some public unease at the prospect of formerly contaminated materials passing into unrestricted public use. Greater support for recycle can be achieved by converting decontaminated materials into products for new controlled uses, particularly within the nuclear industry. Irrespective of the future of nuclear power, the industry has a need for many new items such as waste containers, replacement components etc. Good economics can be achieved by decontaminating the materials and then using existing non-radioactive manufacturing facilities for fabrication of new components. Provided that materials have first been decontaminated to below unrestricted release levels, there is no objection in principle to using non-radioactive facilities for recycling and manufacturing activities, so long as the materials are properly tracked to prevent their uncontrolled release. Surface decontamination has an important role to play in these activities. Efficient and economic decontamination processes are needed to prepare materials for recycle. The EPRI DFDX Process is a process for achieving these objectives. Recent progress with this process is described.

Author(s):  
Steve Thomas

- UK electricity consumers have paid provisions for decommissioning since before 1980 but by 2002, there were still negligible funds available to pay for decommissioning civil nuclear facilities. By then, the two major UK nuclear companies, British Energy and British Nuclear Fuels Limited (BNFL), were both effectively bankrupt. This paper examines: the pre-2002 provisions for decommissioning and how they were lost; the Nuclear Decommissioning Authority, a new public body which took over ownership of BNFL's facilities including the duty to manage their decommissioning and how it expects to carry out and fund decommissioning of its sites; how the re-launched British Energy will contribute to decommissioning its eight plants; and government plans for collecting decommissioning provisions for any new plants.JEL classifications: L50, L38, H23, H44, L71Key words: Nuclear power, decommissioning cost, funding and polluter pays.


2016 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Nick Shykinov ◽  
Robert Rulko ◽  
Dariusz Mroz

Abstract In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.


Author(s):  
Taunia Wilde ◽  
Tim McEvoy ◽  
Richard Holmes ◽  
Gary M. Sandquist

ASME has issued a 2008 revision to the Nuclear Quality Assurance Standard, NQA-1 that impacts the siting design, construction, startup and operations of new generation nuclear power plant designs as well as other nuclear facilities. In view of new nuclear plants recently certified by the NRC, the NQA-1 2008 revision is poised to meet those QA issues and requirements that have or may arise during ESP, COL and other regulatory actions by the NRC. In view of the enhanced safety features and significant design changes associated with this new generation of nuclear infrastructure including the DOE development of the CMRR (Chemical and Metallurgy Research Replacement) at Los Alamos, present QA programs and procedures require a re-evaluation and assessment if the 2008 revision of NQA-1 is widely adapted in the US and possibly other countries. A synopsis of the revisions posed by the 2008 revision to former QA standards is given together with ancillary impacts for the nuclear community.


Subject Nuclear power development in the Gulf. Significance Last month's nuclear agreement between Iran and the P5+1 (UN Security Council permanent members plus Germany) received the public backing of the Gulf Cooperation Council (GCC) states after a meeting between Gulf foreign ministers and US Secretary of State John Kerry on August 2. Yet GCC leaders remain concerned that the deal does not eliminate Iran's nuclear industry and fear that it will try to develop weapons capability. Several GCC states are advancing the development of civilian nuclear energy programmes, mainly to address rising domestic demand for electricity, but also with the regional rivalry with Iran in mind. Impacts Hydrocarbons will dominate the GCC power sector while subsidies remain. Nuclear expansion will increase regional security risks. The GCC envisages 20 nuclear reactors by 2030, producing 23 Gigawatts of electricity. Other GCC states will draw from the UAE's experience in pioneering nuclear development in the Gulf.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Robert A. Leishear

Hydrogen explosions may occur simultaneously with fluid transients' accidents in nuclear facilities, and a theoretical mechanism to relate fluid transients to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in piping systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the piping system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany (Fig. 1Fig. 1Hydrogen explosion damage in nuclear facilities Antaki, et al. [9,10–12] (ASME, Task Group on Impulsively Loaded Vessels, 2009, Bob Nickell)). Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism. In fact, this explosion mechanism may be pertinent to explosions in major nuclear accidents, and a similar explosion mechanism is also possible in oil pipelines during off-shore drilling.


Author(s):  
Ryan Hannink ◽  
Reiner Kuhr ◽  
Tony Morris

Nuclear energy projects continue to evoke strong emotional responses from the general public throughout the world. High Temperature Gas-Cooled Reactor (HTGR) technology offers improved safety and performance characteristics that should enhance public acceptance but is burdened with demonstrating a different set of safety principles. This paper summarizes key issues impacting public acceptance and discusses the importance of openly engaging the public in the early stages of new HTGR projects. The public gets information about new technologies through schools and universities, news and entertainment media, the internet, and other forms of information exchange. Development of open public forums, access to information in understandable formats, participation of universities in preparing and distributing educational materials, and other measures will be needed to support widespread public confidence in the improved safety and performance characteristics of HTGR technology. This confidence will become more important as real projects evolve and participants from outside the nuclear industry begin to evaluate the real and perceived risks, including potential impacts on public relations, branding, and shareholder value when projects are announced. Public acceptance and support will rely on an informed understanding of the issues and benefits associated with HTGR technology. Major issues of public concern include nuclear safety, avoidance of greenhouse gas emissions, depletion of natural gas resources, energy security, nuclear waste management, local employment and economic development, energy prices, and nuclear proliferation. Universities, the media, private industry, government entities, and other organizations will all have roles that impact public acceptance, which will likely play a critical role in the future markets, siting, and permitting of HTGR projects.


2017 ◽  
Vol 16 (03) ◽  
pp. A09
Author(s):  
Thomas Lean ◽  
Sally Horrocks

Between the 1950s and the 1980s the British nuclear industry engaged with ordinary people in a wide range of ways. These included articles in the print media, exhibitions and educational resources as well as through open days, developing nature reserves and building relations with the local communities around nuclear sites. This paper draws on recently collected oral history interviews and archival material to consider what was one of the largest and best resourced efforts to communicate science to the British public between the 1950s and the 1980s.


2021 ◽  
Vol 10 (29) ◽  
pp. 147-172
Author(s):  
Andrea Carolina Ávalos Salgado ◽  

Following the accident of Fukushima in 2011, nuclear facilities in Japan were shut down, and a new evaluation and restart process was developed. Despite the public safety concerns, the current administration expects nuclear energy to become a pillar for economic recovery in the coming years. This paper compares the historic context of restarting Kashiwazaki-Kariwa Nuclear Power Plant before and after Fukushima. The evolution is analyzed through a series of interviews in 2012 and 2013 in the community and with government officers, as well as a close follow-up of the official statements by TEPCO and the government agencies up until the end of 2020. It tackles the development in the relation between TEPCO, local authorities, and local community of this nuclear plant, before and after Fukushima. This historic relation has shown to be the key element in the restart process, even above the legal process.


Author(s):  
Jas S. Devgun

At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond.


Author(s):  
J. Mark Price

Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of employee dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered, including: – Protection; – Personnel Contamination; – Cost; – Radwaste; – Comfort; – Convenience; – Logistics/Rad Material Considerations; – Reject Rate of Laundered Clothing; – Durability; – Security; – Personnel Safety including Heat Stress; – Disposition of Gloves and Booties. In addition, over the last several years there has been a trend of nuclear power plants either running trials or switching to Single Use Protective Clothing (SUPC) from traditional protective clothing. In some cases, after trial usage of SUPC, plants have chosen not to switch. In other cases after switching to SUPC for a period of time, some plants have chosen to switch back to laundering. Based on these observations, this paper reviews the “real” drivers, issues, and interrelating factors regarding the selection and use of protective clothing throughout the nuclear industry.


Sign in / Sign up

Export Citation Format

Share Document