Radioactive Waste: Show Time?

Author(s):  
Hans Code´e ◽  
Ewoud Verhoef

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just ‘wait and see’ or ‘marking time’ is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA — the radioactive waste organisation in the Netherlands — can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: “That long?” How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management.

Author(s):  
Zoran Drace ◽  
Michael I. Ojovan

The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, wasteforms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and nondestructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements; and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious materials and technologies; c) testing and waste acceptance criteria; and d) modelling long term behaviour. These themes as well as all contributions of participating organizations were further developed in the individual reports to be presented in the IAEA publication. The CRP facilitated the exchange of information and research co-operation in resolving similar problems between different institutions and contributed towards improving waste management practices, their efficiency and general enhancement of safety.


2019 ◽  
Vol 39 (1-2) ◽  
pp. 4-18
Author(s):  
Rosa Nan Leunbach ◽  
Kristian H. Nielsen

Denmark was once at the forefront of nuclear research, operating three experimental nuclear reactors at the research facility at Risø, close to Copenhagen. However, the 1985 resolution of the Danish Parliament excluded nuclear power from the national energy mix. In 2003, the Parliament passed a resolution on the decommissioning of the nuclear facility at Risø, including plans for establishing a permanent solution for radioactive waste management. To understand the ensuing socio-technical controversy, we employ the “hybrid forum” framework that emphasizes the entangled political-epistemological role of the municipalities and protest groups. They mobilized political resistance while also performing “research in the wild.” In 2016, the protest groups became part of an institutionalized “hybrid forum” where they could negotiate directly with experts and government representatives. We conclude that municipalities and protest groups were instrumental in changing the Danish position on radioactive waste management from final repository to long-term storage at Risø.


Author(s):  
Ian Upshall

The creation and subsequent access to accurate information is widely accepted as a vital component of a national radioactive waste management strategy. Information on the origin and quantity of the waste together with its physical, chemical and radiological characteristics provides a catalyst for sound and transparent decision making. This information will originate from a number of potentially disparate sources, including material manufacturers, facility operators, waste producers, Government and Non-Government organisations and regulators. The challenge to those with a role in information management in further increased by the fact that much of the information created is required to support activities, not only in the immediate future, but also in the longer-term — typically many decades or even centuries. The International Atomic Energy Agency (IAEA) has published a number of guidance documents under the Safety Series, one of which makes direct reference to information management. The document [1] is intended to assist Member States in the development of a national system for radioactive waste management and identifies the key responsibilities and essential features of such a system. The following statement appears in Section 5: “The regulatory body, the waste generators and the operators of radioactive waste management facilities should maintain documentation and records consistent with the legal requirements and their own needs.” An essential requirement of these ‘documents and records’ is that they should be “...kept in a condition that will enable them to be consulted and understood later by people different from, and possibly without reference to, those who generated the records ...” The scope of the documentation and records to be kept will be wide ranging but will include “...an inventory of radioactive waste, including origin, location, physical and chemical characteristics, and, as appropriate a record of radioactive waste removed or discharged from a facility”, and “site plans, engineering drawings, specifications and process descriptions ... radioactive waste package identification ...”. It is has long been recognised in the United Kingdom that the management of radioactive waste will require the assembly and secure retention of a diversity of records and data. This information will be needed to inform the strategic decision making process, thus contributing to the future safe, environmentally sound and publicly acceptable management of radioactive waste. In the meantime it will also service the nation’s international commitments. When the planning application for a Rock Characterisation Facility (RCF) was refused and the subsequent Nirex appeal rejected in 1997, it was recognised that transfer of waste to a national repository was ulikely to take place for many decades. The long-term preservation of information by the waste management organisations thus became an issue. Since this time, the UK nuclear industry, including the waste producers, regulators and other Government Departments have worked together to develop a common information management system that is now being implemented. It is based on an Oracle database and is supported by ‘electronic tools’ designed to facilitate entry and retrieval of data in a common format. Long-term access to these data underpins many aspects of the system design. Designing such a system and seeing through its development has been a challenge for all those involved. However, as the project nears the completion of the development phase, it is clear there are several benefits in this approach. These include a sharing of best practice, shared development costs, an improved understanding of the needs of all parties, and the use of a common platform and tools. The ‘partnership approach’ between waste management organisations, Government departments and regulators will also reduce the likelihood of future surprises or conflicts of interest. Industry-wide co-operation also provides a greater degree of confidence that the system will continue to enjoy technical and financial support for the foreseeable future. The British Radwaste Information Management System (BRIMS) is supported by the principal waste producers, the Department for Environment, Food and Rural Affairs (DEFRA), the Nuclear Installations Inspectorate (NII) and United Kingdom Nirex Limited (Nirex). All organisations that have participated in its development over the past seven years have free access to it and may use it as part of their waste management strategy.


Author(s):  
Jorge Lang-Lenton Leo´n ◽  
Emilio Garcia Neri

Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as “master plan” of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the most relevant events especially focused on optimizing the existing capacity and the start-up of a purpose–built disposal area for VLLW. Concerning the HLW programme, two aspects may be distinguished in the direct management of spent fuel: temporary storage and long-term management. In this regards, a major challenge has been the decision adopted by the Spanish Government to set up a Interministerial Committee for the establishment of the criteria that must be met by the site of the Centralized Intermediate Storage (CTS) facility as the first and necessary step for the process. Also the developments of the long-term management programme will be presented in the frame of the ENRESA’s R&D programme. Finally, in the field of decommissioning they will be presented the PIMIC project at the CIEMAT centre and the activities in course for the decommissioning of Jose´ Cabrera NPP.


Author(s):  
P. Poskas ◽  
J. E. Adomaitis ◽  
R. Kilda

The growing number of radionuclide applications in Lithuania is mirrored by increasing demands for efficient management of the associated radioactive waste. For the effective control of radioactive sources a national authorization system based on the international requirements and recommendations was introduced, which also includes keeping and maintaining the State Register of Sources of lonising Radiation and Occupational Exposure. The principal aim of the Lithuania’s Radioactive Waste Management Agency is to manage and dispose all radioactive waste transferred to it. Radioactive waste generated during the use of sources in non-power applications are managed according to the basic radioactive waste management principles and requirements set out in the Lithuanian legislation and regulations. The spent sealed sources and other institutional waste are transported to the storage facilities at Ignalina NPP. About 35,000 spent sealed sources in about 500 packages are expected until year 2010 at Ignalina NPP storage facilities. The existing disposal facility for radioactive waste from research, medicine and industry at Maisiagala was built in the early 1960’s according to a concept typical of those applied in the former Soviet Union at that time. SKB (Sweden) with participation of Lithuanian Energy Institute has performed assessment of the long-term safety of the existing facility. It was shown that the existing facility does not provide safe long-term storage of the waste already disposed in the facility. Two alternatives were defined to remedy the situation. A first alternative is the construction of a surface barrier and a second one is a retrieval solution, whereby the already stored waste will be retrieved for conditioning, characterisation and interim storage at Ignalina NPP. Facilities for the processing of the institutional radioactive waste are required before submittal to Ignalina NPP for storage, since the present facilities are inadequate. Feasibility study to establish a new central facility has been performed by SKB International Consultants (Sweden) with participation of Lithuanian Energy Institute. This study has identified the process applied and equipment needed for a new facility. Reference design and Preliminary Safety Assessment have also been performed. Plans for the interim storage and disposal of the institutional waste are described in the paper. The aspects of finging safe disposal solutions for spent sealed sources in a near surface repositories are also discussed.


2016 ◽  
Vol 85 ◽  
pp. 258-265 ◽  
Author(s):  
Jantine Schröder ◽  
Nicolas Rossignol ◽  
Michiel Van Oudheusden

Author(s):  
D. Watson ◽  
I. Streatfield ◽  
C. Grundy ◽  
S. Price-Water ◽  
D. Glazbrook ◽  
...  

In the UK the Office for Nuclear Regulation and the Environment Agency developed the Generic Design Assessment process in response to a request from the UK Government. The process allows the regulators to jointly assess new nuclear reactor designs, in advance of any site-specific proposals to build a nuclear power station. Two reactor types are currently being assessed within Generic Design Assessment: • AREVA and Electricite´ de France’s UK EPR®; • Westinghouse Electric Company’s AP1000®. This paper will present the outcome of the assessment of radioactive waste management within the Generic Design Assessment process. One aspect of particular interest is the management of spent fuel from proposed new reactors as the assessment is based on an assumption that it will be sent for disposal. Therefore the paper will specifically consider the management of spent fuel and how this affects the regulatory decisions. The paper will look at four aspects. The first of these is to give a short overview of the Generic Design Assessment process. This will be followed by a summary of the Generic Design Assessment Radioactive Waste Management assessment on the acceptability of: • The types of waste and spent fuel. • The plans for conditioning of the wastes. • The safety issues associated with short-term storage. • The safety issues associated with long-term storage. • The issues associated with the disposal of the wastes. • The safety issues associated with decommissioning the reactors. The third aspect will be to look at the work commissioned by the Office of Nuclear Regulation in support of the Generic Design Assessment of radioactive waste management and how this has affected the regulatory decisions. This work has looked at the long-term stability of spent fuel in storage and the potential faults associated with the storage and handling of the spent fuel. The paper will end with the main conclusions of the radioactive waste management assessment within Generic Design Assessment. Looking at how storage of spent fuel can affect transport, disposal and decommissioning and how work by licensees could alter these conclusions.


Sign in / Sign up

Export Citation Format

Share Document