Management of Institutional Radioactive Waste in Lithuania

Author(s):  
P. Poskas ◽  
J. E. Adomaitis ◽  
R. Kilda

The growing number of radionuclide applications in Lithuania is mirrored by increasing demands for efficient management of the associated radioactive waste. For the effective control of radioactive sources a national authorization system based on the international requirements and recommendations was introduced, which also includes keeping and maintaining the State Register of Sources of lonising Radiation and Occupational Exposure. The principal aim of the Lithuania’s Radioactive Waste Management Agency is to manage and dispose all radioactive waste transferred to it. Radioactive waste generated during the use of sources in non-power applications are managed according to the basic radioactive waste management principles and requirements set out in the Lithuanian legislation and regulations. The spent sealed sources and other institutional waste are transported to the storage facilities at Ignalina NPP. About 35,000 spent sealed sources in about 500 packages are expected until year 2010 at Ignalina NPP storage facilities. The existing disposal facility for radioactive waste from research, medicine and industry at Maisiagala was built in the early 1960’s according to a concept typical of those applied in the former Soviet Union at that time. SKB (Sweden) with participation of Lithuanian Energy Institute has performed assessment of the long-term safety of the existing facility. It was shown that the existing facility does not provide safe long-term storage of the waste already disposed in the facility. Two alternatives were defined to remedy the situation. A first alternative is the construction of a surface barrier and a second one is a retrieval solution, whereby the already stored waste will be retrieved for conditioning, characterisation and interim storage at Ignalina NPP. Facilities for the processing of the institutional radioactive waste are required before submittal to Ignalina NPP for storage, since the present facilities are inadequate. Feasibility study to establish a new central facility has been performed by SKB International Consultants (Sweden) with participation of Lithuanian Energy Institute. This study has identified the process applied and equipment needed for a new facility. Reference design and Preliminary Safety Assessment have also been performed. Plans for the interim storage and disposal of the institutional waste are described in the paper. The aspects of finging safe disposal solutions for spent sealed sources in a near surface repositories are also discussed.

Author(s):  
Mick Bacon ◽  
Doug Ilett ◽  
Andy Whittall

In 2006 the UK Governments response to recommendations by its Committee on Radioactive Waste Management (CoRWM) established, in England and Wales, that geological disposal, supported by safe and secure interim storage, is the preferred route for the long-term management of higher-activity radioactive waste (i.e. that which is not suitable for near-surface disposal). It also gave the responsibility for delivering the programme for a deep geological repository to the Nuclear Decommissioning Authority (NDA). The Scottish Government has a policy of long term, near site, near surface safe and secure interim storage. To support the open and transparent approach promised by Government, the Health and Safety Executive (HSE), the Environment Agency and the Scottish Environment Protection Agency (SEPA) are developing joint guidance on the management of higher-activity radioactive waste to explain regulatory objectives in securing safe and secure interim storage and the associated management of radioactive wastes. The guidance comes in two parts: • Guidance on the regulatory process; • Technical guidance modules. The guidance promotes a cradle to grave approach to radioactive waste management and by aligning the regulatory interests of environmental and safety regulators it delivers one of the Government’s “Better Regulation” objectives. This paper describes the process by which the joint guidance was produced with particular emphasis on stakeholder engagement. It describes the key features of the guidance, including the concept of the radioactive waste management case (RWMC). Finally the problems encountered with dissemination and implementation are discussed together with measures taken by the regulators to improve these aspects.


2020 ◽  
Vol 23 (4) ◽  
pp. 414-427
Author(s):  
M. L. Zhemzhurov ◽  
N. D. Kuzmina ◽  
A. V. Kuzmin ◽  
K. A. Yarashevich

In this paper, an estimation of radioactive waste activity resources in mothballed and being decommissioned storage facilities of the special enterprise for radioactive waste management, Unitary Enterprise "Ekores" (The Republic of Belarus), has been carried out taking into account the results of work on their comprehensive engineering and radiation research. At the same time, activity resources are differentiated by radioactive waste categories, what will serve as the basis for development of conceptual technological solutions for their extraction from storage facilities and long-term safety case.


2017 ◽  
pp. 63-69
Author(s):  
I. Kuzmiak ◽  
V. Kravtsov

The paper considers the procedure of ensuring physical protection of radioactive materials, in particular establishing levels of physical protection and its impact on nuclear security in Ukraine. There is a brief overview of the nature and types of radioactive waste in Ukraine, types of storage facilities, other radioactive waste management facilities, locations of radioactive waste in Ukraine, in particular the Chornobyl exclusion zone, causes of threats and risks. Efficient prevention of these threats requires the state system for physical protection of facilities and installations. Based on experience, paper authors, who review physical protection in construction and modernization of physical protection systems of radioactive waste management facilities, consider the state of physical protection of storage facilities and other installations, their modernization and unsolved problems. The paper also considers the physical protection issue in radioactive waste transport and provides conclusions on the improvement of the regulatory and legal framework of nuclear security in Ukraine.


Author(s):  
Ian Upshall

The creation and subsequent access to accurate information is widely accepted as a vital component of a national radioactive waste management strategy. Information on the origin and quantity of the waste together with its physical, chemical and radiological characteristics provides a catalyst for sound and transparent decision making. This information will originate from a number of potentially disparate sources, including material manufacturers, facility operators, waste producers, Government and Non-Government organisations and regulators. The challenge to those with a role in information management in further increased by the fact that much of the information created is required to support activities, not only in the immediate future, but also in the longer-term — typically many decades or even centuries. The International Atomic Energy Agency (IAEA) has published a number of guidance documents under the Safety Series, one of which makes direct reference to information management. The document [1] is intended to assist Member States in the development of a national system for radioactive waste management and identifies the key responsibilities and essential features of such a system. The following statement appears in Section 5: “The regulatory body, the waste generators and the operators of radioactive waste management facilities should maintain documentation and records consistent with the legal requirements and their own needs.” An essential requirement of these ‘documents and records’ is that they should be “...kept in a condition that will enable them to be consulted and understood later by people different from, and possibly without reference to, those who generated the records ...” The scope of the documentation and records to be kept will be wide ranging but will include “...an inventory of radioactive waste, including origin, location, physical and chemical characteristics, and, as appropriate a record of radioactive waste removed or discharged from a facility”, and “site plans, engineering drawings, specifications and process descriptions ... radioactive waste package identification ...”. It is has long been recognised in the United Kingdom that the management of radioactive waste will require the assembly and secure retention of a diversity of records and data. This information will be needed to inform the strategic decision making process, thus contributing to the future safe, environmentally sound and publicly acceptable management of radioactive waste. In the meantime it will also service the nation’s international commitments. When the planning application for a Rock Characterisation Facility (RCF) was refused and the subsequent Nirex appeal rejected in 1997, it was recognised that transfer of waste to a national repository was ulikely to take place for many decades. The long-term preservation of information by the waste management organisations thus became an issue. Since this time, the UK nuclear industry, including the waste producers, regulators and other Government Departments have worked together to develop a common information management system that is now being implemented. It is based on an Oracle database and is supported by ‘electronic tools’ designed to facilitate entry and retrieval of data in a common format. Long-term access to these data underpins many aspects of the system design. Designing such a system and seeing through its development has been a challenge for all those involved. However, as the project nears the completion of the development phase, it is clear there are several benefits in this approach. These include a sharing of best practice, shared development costs, an improved understanding of the needs of all parties, and the use of a common platform and tools. The ‘partnership approach’ between waste management organisations, Government departments and regulators will also reduce the likelihood of future surprises or conflicts of interest. Industry-wide co-operation also provides a greater degree of confidence that the system will continue to enjoy technical and financial support for the foreseeable future. The British Radwaste Information Management System (BRIMS) is supported by the principal waste producers, the Department for Environment, Food and Rural Affairs (DEFRA), the Nuclear Installations Inspectorate (NII) and United Kingdom Nirex Limited (Nirex). All organisations that have participated in its development over the past seven years have free access to it and may use it as part of their waste management strategy.


Author(s):  
Jorge Lang-Lenton Leo´n ◽  
Emilio Garcia Neri

Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as “master plan” of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the most relevant events especially focused on optimizing the existing capacity and the start-up of a purpose–built disposal area for VLLW. Concerning the HLW programme, two aspects may be distinguished in the direct management of spent fuel: temporary storage and long-term management. In this regards, a major challenge has been the decision adopted by the Spanish Government to set up a Interministerial Committee for the establishment of the criteria that must be met by the site of the Centralized Intermediate Storage (CTS) facility as the first and necessary step for the process. Also the developments of the long-term management programme will be presented in the frame of the ENRESA’s R&D programme. Finally, in the field of decommissioning they will be presented the PIMIC project at the CIEMAT centre and the activities in course for the decommissioning of Jose´ Cabrera NPP.


Author(s):  
Hans Code´e ◽  
Ewoud Verhoef

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just ‘wait and see’ or ‘marking time’ is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA — the radioactive waste organisation in the Netherlands — can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: “That long?” How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management.


Author(s):  
F.-W. Ledebrink ◽  
P. Faber

Abstract In the period since Germany’s experimental final repository ASSE was closed in 1978, around 5000 drums of conditioned plutonium-bearing radioactive waste from mixed-oxide (MOX) fuel fabrication have accumulated in the interim storage facilities of Siemens AG’s MOX fuel fabrication plant in Hanau, Germany — formerly ALKEM GmbH, now Siemens Decommissioning Projects (Siemens DP). Another 5000 drums will arise in the course of decommissioning and dismantling the MOX plant which has now been underway for some months. Hopes that a final waste repository would soon be able to go into operation in Germany have remained unfulfilled over the last 20 years. Also, the agreements reached between Germany’s electric utilities and the Federal Government regarding the future of nuclear energy have not led to any further progress in connection with the issue of radwaste disposal. A concrete date for a final repository to start operation has still not been set. The German Federal Government estimates that a geologic repository will not be needed for at least another 30 years. Since the opening of a final storage facility is not foreseeable in the near term, Siemens is taking the necessary steps to enable radwaste to be safely stored in aboveground interim storage facilities for a prolonged period of time. Conditioning of radwaste from MOX fuel fabrication by cementing it in drums was started in 1984 in the belief — which was justified at that time — that final storage at the Konrad mine would be possible as of 1995. The quality requirements specified for the waste drums were therefore based on the Konrad acceptance criteria. The operating license for the storage facilities at Hanau at which these drums are presently in interim storage is limited to 20 years and will be expiring in 2004. The drums have not suffered any corrosion to date and, according to past experience, are not expected to do so in the future. However, permission to keep the drums in interim storage for a longer period of time in their current form would be extremely difficult to obtain as their corrosion resistance would have to be demonstrated for a further 30 years. The present goal is therefore to create a waste form suitable for interim storage which needs no maintenance over a long-term period, incorporates state-of-the-art technology and will probably not require any further treatment of the waste packages prior to emplacement in a final storage facility. At the same time, the highest possible degree of safety must be assured for the time during which the waste remains in interim storage. This goal can be attained by conditioning the drums such that they satisfy the requirements currently specified for final storage at the Konrad repository (1). In practice, this means immobilizing the cemented waste drums in concrete inside steel “Konrad Containers” (KCs). The KCs themselves and the concrete backfill represent two further barriers which not only serve as radiation shielding but also protect the drums against corrosion as well as any possible release of radioactive materials in the event of accidents occurring during interim storage. As the KCs are cuboid in shape, they can be stacked in space-saving configurations and are thus particularly suitable for interim storage. Also, due to their extremely heavy weight, theft of the waste packages can be practically ruled out. Despite the fact that the agreements with the German Federal Government have failed to bring opening of the Konrad repository within reach, it is nevertheless a good idea today to condition radwaste in a manner that renders it suitable for ultimate storage there. The agreements between the Government and the utilities are expected at least to result in a land use permit being issued for the Konrad mine before the end of 2001. At present there are no facts known that could cause the safety of this facility to be questioned. Only recently, Germany’s International Nuclear Technology Commission (ILK) confirmed Konrad’s suitability and demanded that it be placed in operation without further delay (2). Even if its operation should, in fact, be blocked by political lobbies, potential legal action or economic considerations, the alternative repository at Gorleben could possibly become operable in approximately 30 years’ time. Gorleben was planned right from the start to be able to accommodate waste packages based on the Konrad acceptance criteria. This means that any waste packages designed for storage at Konrad could likewise be handled and stored at Gorleben. The processes used by Siemens for conditioning of radwaste conform to the recommendations of the “Guidelines for the Control of radioactive Waste with negligible Heat Generation” issued by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) in 1989 (3).


Author(s):  
Zoran Drace ◽  
Michael I. Ojovan

The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, wasteforms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and nondestructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements; and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious materials and technologies; c) testing and waste acceptance criteria; and d) modelling long term behaviour. These themes as well as all contributions of participating organizations were further developed in the individual reports to be presented in the IAEA publication. The CRP facilitated the exchange of information and research co-operation in resolving similar problems between different institutions and contributed towards improving waste management practices, their efficiency and general enhancement of safety.


Sign in / Sign up

Export Citation Format

Share Document