Instrumented Measurements on Radioactive Waste Disposal Containers During Experimental Drop Testing

Author(s):  
Thomas Quercetti ◽  
Andre Musolff ◽  
Karsten Mu¨ller

In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing.

2020 ◽  
Vol 195 ◽  
pp. 03043
Author(s):  
Zhixiong Zeng ◽  
Yu-Jun Cui ◽  
Nathalie Conil ◽  
Jean Talandier

Compacted MX80 bentonite/Callovo-Oxfordian (COx) claystone mixture has been considered as a possible sealing/backfilling material in the French deep geological radioactive waste disposal. The swelling pressure of such mixture is an important factor in the design and long-term safety assessment of deep geological repositories. In this study, constant-volume swelling pressure tests were performed on the mixtures with different claystone fractions and dry densities. The test results show that the swelling pressure of the mixtures decreased with the increasing claystone fraction and decreasing dry density. According to the experimental results, the contribution of claystone to the global swelling pressure was further investigated. It was found that the deformation of claystone and its contribution to swelling pressure was highly dependent on the claystone fraction. As the claystone fraction was larger than 30%, the claystone in the mixture swelled, contributing to the global swelling pressure; On the contrary, as the claystone fraction was less than 30%, the swelling of claystone was inhibited by the bentonite and it worked an inert material without any contribution to the swelling pressure.


Author(s):  
Yue Weihong ◽  
Xu Yeqiang

Operation and decommissioning of nuclear facilities will produce radioactive waste, and different radionuclides in the waste will bring different hazards to the public and the environment. The waste would be sorted more reasonably by distinguishing different radionuclides. Yet it is still very difficult to measure directly the pure Beta radioactive waste in situ, though in situ Gamma-analytical and Alpha-waste-barrel measurement techniques have become more sophisticated. The aim is to propose a scientific technique to sort the radioactive waste in situ. This study focused on the 90Sr-contaminated material in China Institute of Atomic Energy and optimized the design of the existing solid waste disposal facilities. A novel technique to measure the radioactive waste 90Sr-90Y online was proposed, trying to sort the radioactive waste as optimally as possible to realize further separation of exemption waste. Theoretically, the exemption waste can be further sorted, and it can guide the design of radioactive waste disposal system.


Sign in / Sign up

Export Citation Format

Share Document