Simulation of the Airflow Characteristics of a Two-Stroke Natural Gas Engine With an Articulated Crank

Author(s):  
J. Adair ◽  
A. Kirkpatrick ◽  
D. B. Olsen ◽  
H. Gitano-Briggs

The topic of this paper is the simulation of the airflow characteristics of a large bore two stroke natural gas fueled engine. The modeling was performed with the program WAVE, a computer code developed for engine cycle simulations. The engine studied was a four cylinder Cooper GMV engine. This engine has an articulated crankshaft connecting even and odd bank cylinders. Due to the articulation, the even bank cylinders have different piston profiles, port profiles, and compression ratios than the odd bank cylinders. Due to the non-symmetric timing and articulated geometry of the odd and even banks, the gas flow processes are not the same for each cylinder bank. The different manifold and port pressure profiles result in different amounts of trapped mass in the odd and even banks. The even bank is predicted to have a smaller amount of trapped mass and slightly lower trapping and scavenging efficiencies. Finally, the model predicts that the even bank cylinders attain higher maximum temperatures, which would produce increased NOx.

2017 ◽  
Author(s):  
Robert Draper ◽  
Brendan Lenski ◽  
Franz-Joseph Foltz ◽  
Roderick Beazley ◽  
William Tenny

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122857
Author(s):  
Zhongshu Wang ◽  
Xing Su ◽  
Xiaoyan Wang ◽  
Demin Jia ◽  
Dan Wang ◽  
...  

2017 ◽  
Vol 17 (14) ◽  
pp. 8739-8755 ◽  
Author(s):  
Jenni Alanen ◽  
Pauli Simonen ◽  
Sanna Saarikoski ◽  
Hilkka Timonen ◽  
Oskari Kangasniemi ◽  
...  

Abstract. Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.


1991 ◽  
Author(s):  
Mónica Graciela Vázquez ◽  
Patricia Errecalde ◽  
Sergio Fabián Seín ◽  
Daniel Gonzalez

Sign in / Sign up

Export Citation Format

Share Document