Natural Gas Engine Oil Development

1991 ◽  
Author(s):  
Mónica Graciela Vázquez ◽  
Patricia Errecalde ◽  
Sergio Fabián Seín ◽  
Daniel Gonzalez
2007 ◽  
Vol 8 (5) ◽  
pp. 439-448 ◽  
Author(s):  
G Mullins ◽  
J Truhan

Semi-volatile in internal combustion engine lubricating oil may be responsible for limiting service life and can lead to in-cylinder deposit formation. In order to measure semivolatile content, a new thermogravimetric analysis (TGA) procedure has been adapted from existing soot procedures to determine the levels of semi-volatile compounds in progressively aged lubricating oil samples from a natural gas engine dynamometer test cell run. The per cent weight remaining at 550 °C, while heated at a constant rate in an inert atmosphere, varied linearly with running time, viscosity, and oxidation and nitration. The method yielded reproducible run-to-run results and showed good agreement between helium and argon atmospheres. Mass spectroscopy data confirmed increased levels of high molecular weight species during engine operation. This method may be applicable to diesel engine oil samples.


Author(s):  
Nikhil Dayanand ◽  
John D. Palazzotto ◽  
Alan T. Beckman

In order to investigate the possible environmental and economic benefits of lubricants optimized for stationary natural gas engine efficiency, a decision was made to develop a test stand to quantify the effects of lubricant viscosities and formulations on the brake specific fuel consumption. Many fuel economy tests already exist for evaluating gasoline and heavy duty diesel motor oils which have proven the benefit of fuel economy from different lubricant formulations. These engines would not be suitable tools for evaluating the fuel economy performance of lubricating oils formulated specifically for stationary natural gas engines, since there are significant differences in operating conditions, fuel type, and oil formulations. This paper describes the adaptation of a Waukesha VSG F11 GSID as a tool to evaluate fuel consumption performance. The performance of brake specific fuel consumption when using different formulations was measured at selected high loads and rated speed. The results of the testing program discuss the viscosity and additive effects of stationary natural gas engine oil formulations on brake specific fuel consumption. The results will detail the change in brake specific fuel consumption between natural gas engine oil formulations blended to varying viscosities and compared to a typical natural gas engine oil formulation with a viscosity of 13.8 cSt @ 100°C. The second portion of the test program explores the effect of different additive packages that were blended to the same finished oil viscosity. It was acknowledged that there were statistical differences in brake specific fuel consumption characteristics between lubricants different in viscosity and additive formulations.


2017 ◽  
Author(s):  
Robert Draper ◽  
Brendan Lenski ◽  
Franz-Joseph Foltz ◽  
Roderick Beazley ◽  
William Tenny

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122857
Author(s):  
Zhongshu Wang ◽  
Xing Su ◽  
Xiaoyan Wang ◽  
Demin Jia ◽  
Dan Wang ◽  
...  

2017 ◽  
Vol 17 (14) ◽  
pp. 8739-8755 ◽  
Author(s):  
Jenni Alanen ◽  
Pauli Simonen ◽  
Sanna Saarikoski ◽  
Hilkka Timonen ◽  
Oskari Kangasniemi ◽  
...  

Abstract. Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.


Sign in / Sign up

Export Citation Format

Share Document