Effect of Stationary Natural Gas Engine Oils on Fuel Economy

Author(s):  
Nikhil Dayanand ◽  
John D. Palazzotto ◽  
Alan T. Beckman

In order to investigate the possible environmental and economic benefits of lubricants optimized for stationary natural gas engine efficiency, a decision was made to develop a test stand to quantify the effects of lubricant viscosities and formulations on the brake specific fuel consumption. Many fuel economy tests already exist for evaluating gasoline and heavy duty diesel motor oils which have proven the benefit of fuel economy from different lubricant formulations. These engines would not be suitable tools for evaluating the fuel economy performance of lubricating oils formulated specifically for stationary natural gas engines, since there are significant differences in operating conditions, fuel type, and oil formulations. This paper describes the adaptation of a Waukesha VSG F11 GSID as a tool to evaluate fuel consumption performance. The performance of brake specific fuel consumption when using different formulations was measured at selected high loads and rated speed. The results of the testing program discuss the viscosity and additive effects of stationary natural gas engine oil formulations on brake specific fuel consumption. The results will detail the change in brake specific fuel consumption between natural gas engine oil formulations blended to varying viscosities and compared to a typical natural gas engine oil formulation with a viscosity of 13.8 cSt @ 100°C. The second portion of the test program explores the effect of different additive packages that were blended to the same finished oil viscosity. It was acknowledged that there were statistical differences in brake specific fuel consumption characteristics between lubricants different in viscosity and additive formulations.

Author(s):  
Joshua Finneran ◽  
Colin P Garner ◽  
Francois Nadal

Liquefied natural gas is emerging as viable and potentially sustainable transportation fuel with intrinsic economic and environmental benefits. Liquefied natural gas possesses thermomechanical exergy amounting to ∼1 MJ kg-1 which is currently wasted on liquefied natural gas vehicles, while it could be used to produce useful work. The present investigation proposes an indirect means of obtaining useful work from liquefied natural gas through charge cooling and also demonstrates additional benefits in terms of NOx emissions and power density. A thermodynamic engine model was used to quantify the performance benefits of such a strategy for a homogeneous-charge, spark-ignited, stoichiometric natural gas engine. Four fuelling strategies were compared in terms of fuel consumption, mean effective pressure and NOx emissions. Compared to the conventional port-injected natural gas engine (where gaseous fuel is injected), it was found that directly injecting the liquid phase fuel into the cylinder near the start of the compression stroke resulted in approximately -8.9% brake specific fuel consumption, +18.5% brake mean effective pressure and -51% brake specific NOx depending on the operating point. Port-injection of the fuel in the liquid phase carried similar benefits, while direct injection of the fuel in the gaseous phase resulted in minor efficiency penalties (∼+1.3% brake specific fuel consumption). This work highlights the future potential of liquefied natural gas vehicles to achieve high specific power, high efficiency and ultra-low emissions (such as NOx) by tailoring the fuel system to fully exploit the cryogenic properties of the fuel.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


1991 ◽  
Author(s):  
Mónica Graciela Vázquez ◽  
Patricia Errecalde ◽  
Sergio Fabián Seín ◽  
Daniel Gonzalez

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


2007 ◽  
Vol 8 (5) ◽  
pp. 439-448 ◽  
Author(s):  
G Mullins ◽  
J Truhan

Semi-volatile in internal combustion engine lubricating oil may be responsible for limiting service life and can lead to in-cylinder deposit formation. In order to measure semivolatile content, a new thermogravimetric analysis (TGA) procedure has been adapted from existing soot procedures to determine the levels of semi-volatile compounds in progressively aged lubricating oil samples from a natural gas engine dynamometer test cell run. The per cent weight remaining at 550 °C, while heated at a constant rate in an inert atmosphere, varied linearly with running time, viscosity, and oxidation and nitration. The method yielded reproducible run-to-run results and showed good agreement between helium and argon atmospheres. Mass spectroscopy data confirmed increased levels of high molecular weight species during engine operation. This method may be applicable to diesel engine oil samples.


2021 ◽  
pp. 146808742199652
Author(s):  
Chris A Van Roekel ◽  
David T Montgomery ◽  
Jaswinder Singh ◽  
Daniel B Olsen

Stoichiometric industrial natural gas engines rely on robust design to achieve consumer driven up-time requirements. Key to this design are exhaust components that are able to withstand high combustion temperatures found in this type of natural gas engine. The issue of exhaust component durability can be addressed by making improvements to materials and coatings or decreasing combustion temperatures. Among natural gas engine technologies shown to reduce combustion temperature, dedicated exhaust gas recirculation (EGR) has limited published research. However, due to the high nominal EGR rate it may be a technology useful for decreasing combustion temperature. In previous work by the author, dedicated EGR was implemented on a Caterpillar G3304 stoichiometric natural gas engine. Examination of combustion statistics showed that, in comparison to a conventional stoichiometric natural gas engine, operating with dedicated EGR requires adjustments to the combustion recipe to achieve acceptable engine operation. This work focuses on modifications to the combustion recipe necessary to improve combustion statistics such as coefficient of variance of indicated mean effective pressure (COV of IMEP), cylinder-cylinder indicated mean effective pressure (IMEP), location of 50% mass fraction burned, and 10%–90% mass fraction burn duration. Several engine operating variables were identified to affect these combustion statistics. A response surface method (RSM) optimization was chosen to find engine operating conditions that would result in improved combustion statistics. A third order factorial RSM optimization was sufficient for finding optimized operating conditions at 3.4 bar brake mean effective pressure (BMEP). The results showed that in an engine with a low turbulence combustion chamber, such as a G3304, optimized combustion statistics resulted from a dedicated cylinder lambda of 0.936, spark timing of 45° before top dead center (°bTDC), spark duration of 365 µs, and intake manifold temperature of 62°C. These operating conditions reduced dedicated cylinder COV of IMEP by 10% (absolute) and the difference between average stoichiometric cylinder and dedicated cylinder IMEP to 0.19 bar.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Erdal Tunçer ◽  
Tarkan Sandalcı ◽  
Yasin Karagöz

In this study, a single cylinder of 1.16 L, naturally aspirated engine was converted to a spark ignition engine, which was a diesel engine operating with natural gas as fuel. By placing electronic throttle, electronic ignition module, gas fuel injectors and proximity sensors on the test engine, the engine has been turned into a positive ignition engine that can work with natural gas as fuel, thanks to the electronic control unit developed by our project team. Then, in the study performed, different cycle skipping strategies were experimentally investigated at a constant engine speed of 1565 rpm, in accordance with the generator operating conditions. Engine performance, emissions (CO, HC, and NOx), and combustion characteristics (cylinder pressure, rate of heat release, etc.) of cycle skipping strategies were experimentally investigated with natural gas as fuel in Normal, 3N1S, 2N1S, and 1N1S engine operating modes. According to the results obtained, specific fuel consumption, CO and HC values improved in all cycle skipping operating conditions, except for NOx, but the best results were obtained in 2N1S operating conditions; it was concluded that the specific fuel consumption, CO and HC values improved by 11.19%, 61.89%, and 65.60%, respectively.


Sign in / Sign up

Export Citation Format

Share Document