Numerical Investigation on DI Diesel Engine Running With Eucalyptus Biodiesel and its Blends

Author(s):  
L. Tarabet ◽  
K. Loubar ◽  
Mohand S. Lounici ◽  
S. Hanchi ◽  
M. Tazerout

The aim of the present work is to investigate the possibility of using eucalyptus biodiesel and its blends with diesel fuel as an alternative fuel for diesel engines. Eucalyptus oil is converted to biodiesel with ethanol using sodium hydroxide as a catalyst. The characterization of the obtained biodiesel shows that the thermo-physical properties are in the range recommended by American Standard (ASTM D6751). Innovative biodiesel development tests on the diesel engine require a lot of time and efforts. Here, mathematical model, which is based on the thermodynamic single zone model, is developed to analyze the combustion characteristics such as cylinder pressure and the performance characteristics such as brake power, brake thermal efficiency and specific fuel consumption of a DI diesel engine.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Claude Valery Ngayihi Abbe ◽  
Robert Nzengwa ◽  
Raidandi Danwe

The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine’s in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.


Author(s):  
H. Arunkumar ◽  
S.H. Manjunath ◽  
N. Varunkumar Reddy

Rubber seed oil (RSO), derived from the seeds of Hevea brasiliensis, is an exciting alternative with great potential for use in biodiesel production. Furthermore, it can be injected directly into an internal combustion engine, blended with diesel derived from fossil fuels. The present work deals with the potential estimation of waste cooking oil (WCO) bio diesel and RSO biodiesel, characterization of biodiesel, performance and exhaust analysis of biodiesel blends in DI diesel engine. The best results in terms of performance and emission are obtained for B10 blend which resulted in highest brake thermal efficiency of 19.2 % at 80% loading. The NOx emissions are maximum for B20 blend.


Author(s):  
N. H. Walke ◽  
M. R. Nandgaonkar ◽  
N. V. Marathe

Due to stricter emission norms, diesel engine is facing challenges of in-cylinder emissions reduction. Low complexity emissions prediction models are desired, with a long term objective to extend it to emissions prediction during transient operations. This paper is focused on the formulation and investigation of simplified model for prediction of in-cylinder pressures, temperatures engine-out NOx and Soot emissions. Being a predictive model, this does not require cylinder pressure as an input. To have better computational efficiency, a single-zone model is used for the combustion model. Fuel burning rate is predicted using Watson model. Two-zone model has been formulated to predict NOx and Soot emissions. Flame temperatures are predicted by enthalpy balance. Thermal NO concentration is predicted by using Zeldovich mechanism. Soot prediction is based on approach proposed by Hiroyasu. Prediction model is validated using a Turbocharged DI Diesel engine, at various speed-load conditions. The predicted results of the in-cylinder pressure histories, NOx emissions and Soot emissions are in good agreement with the measured data.


Author(s):  
K. Ashok ◽  
N. Alagumurthi ◽  
C. G. Saravanan

An organic compound, Dioxane, is blended to reduce the viscosity of raw vegetable oil (Mahua). A dilute blend was prepared by mixing with raw vegetable oil (Mahua) and 10% dioxane in volume basis. Tests were conducted on a single cylinder, water cooled, DI diesel engine coupled with the eddy current dynamometer. Emissions like HC, NOX, etc., were measured by using gas analyzer and smoke density was measured by using smoke meter. The cylinder pressure, heat release rate were measured by combustion analyzer. From the experimental investigation, it was observed that operating at a blend ratio of 10% diesel-80% mahua oil-10% Dioxane significantly reduced the HC and NOx emissions when compared to diesel fuel. It was also observed, the variation of break thermal efficiency is almost same to that of diesel fuel. Hence, it can be concluded that raw vegetable oil (mahua) with Dioxane blend could partially replace the diesel, as a fuel.


Author(s):  
Nishikant V. Deshpande ◽  
Suhas C. Kongre ◽  
Piyush N. Deshpande ◽  
Rajan Singh

Diesel engine is the most efficient power plant among all known types of internal combustion engines. The Diesel engine is a major candidate to become the power plant of the future. Environmental benefits of Diesel such as low green house gas emissions are balanced by growing concern with emission of Nitrogen oxide (NOx) and Diesel Particulates (PM). The concern over Diesel particulate has increased in recent year because of health concerns. The objective of this research work is to identify the possibility of development of foam type diesel particulate filters (DPF) with indigenous ceramic materials which are easily available and cheaper. While developing the foam type diesel particulate filters, the main aim is to develop required porous structure for DPF with substantial strength, with low back pressure to minimize loss of engine performance, and with high trapping efficiency to reduce the particulate matter. The objective of this research work is also to investigate the effect of new developed filters without any regeneration arrangement and without any control or monitoring system, on the reduction of dry particulate matter and on the performance of diesel engine in terms of parameters like smoke density, back pressure, brake thermal efficiency and brake power. Use of DPF reduces smoke density with back pressure in acceptable limit. Parameters like brake power loss, increase in brake specific fuel consumption and decrease in brake thermal efficiency are caused by increased engine back pressure created by installation of the DPF system. This power penalty is within permissible limits, but can be further reduced by incorporating a regeneration system.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012028
Author(s):  
Ashish Kumar Singh ◽  
Mohd.Mohsin Khan ◽  
Harveer Singh Pali

Abstract The most potential long-term and renewable substitute of mineral diesel are biofuels. The growth and degradation of energy resources have an enormous influence on the long-term viability of the human community. Alcohols are gaining prominence in the current renewable energy scenario due to their ease of manufacturing and fuel characteristics. In this investigation, hexanol-diesel blend ratios (up to 20% v/v) is taken into account for this investigation in a single cylinder, water cooled, unmodified 4-stroke DI diesel engine. The increase in 1-hexanol volume content correlates to an improvement in combustion thereby promoting brake thermal efficiency. The greater concentration of oxygen in 1-hexanol reduces emission viz. HC and CO and increases value of NOx. Current investigation recommends a feasible option to substitute ULSD for the capabilities of 1-hexanol.


2014 ◽  
Vol 18 (1) ◽  
pp. 259-268 ◽  
Author(s):  
S.R. Premkartikkumar ◽  
K. Annamalai ◽  
A.R. Pradeepkumar

Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.


1994 ◽  
Author(s):  
Bi Xiaoping ◽  
Han Shu ◽  
Zhiliang Dai ◽  
Shengpo Yin ◽  
Chuhua Duan

Sign in / Sign up

Export Citation Format

Share Document