High Efficiency Minichannel and Mini-Impingement Cooling Systems for Hybrid Electric Vehicle Electronics

Author(s):  
Srinath V. Ekkad ◽  
Pritish Parida ◽  
Khai Ngo

Over the years, electronic equipment, especially semiconductor based devices, have found their applications in almost all fields of research. The demand for more power and performance from such electronic equipment has constantly been growing resulting in an increased amount of heat dissipation from these devices. While conventional cooling solutions have performed the task of heat removal, no straightforward extension has been possible for significantly high heat fluxes dissipated by smaller and more efficient electronic devices. Thermal management of high-density power control unit for hybrid electric vehicle is one such challenging application. Over the last few years, the performance of this power control unit has been improved and size has been reduced to attain higher efficiency and performance causing the heat dissipation as well as heat density to increase significantly. Efforts are constantly being made to reduce the PCU size even further and also to reduce the manufacturing costs. As a consequence, heat density will go up (∼200–250 W/cm2) and thus, a better high performance cooler/heat exchanger is required which can operate under the existing cooling system design (pressure drop limitation) and at the same time, maintain active devices temperature within optimum range (<120–125°C) for higher reliability. The focus of this paper is to discuss the development of various cooling options for high heat flux dissipating devices with severe size constraints. A parametric and optimization study on the selected designs was performed. Finally, the optimized cooler/heat exchanger was tested under actual running conditions. The methodology was to explore various high performance cooling options such as impinging jets, pin fins, and ribbed mini-channels and to arrive at new promising, conceptual designs. These new designs were then compared against similar conventional designs both numerically and experimentally. Additionally, conjugate heat transfer simulations were performed on partial packaging model to compare the various designs. Experiments were also performed to validate the simulation models and characterize the meshing parameters to perform cost and time effective calculations/simulations.

Author(s):  
Pritish R. Parida ◽  
Srinath V. Ekkad ◽  
Khai Ngo

Necessitated by the dwindling supply of petroleum resources, various new automotive technologies have been actively developed from the perspective of achieving energy security and diversifying energy sources. Hybrid electric vehicles and electric vehicles are a few such examples. Such diversification requires the use of power control units essentially for power control, power conversion, and power conditioning applications such as variable speed motor drives (dc–ac conversion), dc–dc converters and other similar devices. The power control unit of a hybrid electric vehicle or electric vehicle is essentially the brain of the hybrid system as it manages the power flow between the electric motor generator, battery and gas engine. Over the last few years, the performance of this power control unit has been improved and size has been reduced to attain higher efficiency and performance, causing the heat dissipation as well as heat density to increase significantly. Efforts are constantly being made to reduce this size even further. As a consequence, a better high performance cooler/heat exchanger is required to maintain the active devices temperature within optimum range. Cooling schemes based on multiple parallel channels are a few solutions which have been widely used to dissipate transient and steady concentrated heat loads and can be applied to existing cooling system with minor modifications. The aim of the present study has therefore been to study the various cooling options based on mini-channel and rib-turbulated mini-channel cooling for application in a hybrid electric vehicle and other similar consumer products, and perform a parametric and optimization study on the selected designs. Significant improvements in terms of thermal performance, reduced overall pressure drop, and volume reduction have been shown both experimentally and numerically. This paper is the first part in a two part submission and focuses on the design and evaluation of mini-channel and rib-turbulated mini-channel cooling configurations. The second part of this paper discusses the manufacturing and testing of the cooling device.


2015 ◽  
Author(s):  
Zhafir Aizat Husin ◽  
Erwan Sulaiman ◽  
Faisal Khan ◽  
Mohamed Mubin Aizat Mazlan ◽  
Syed Muhammad Naufal Syed Othman

2000 ◽  
Author(s):  
Michael Ogburn ◽  
Douglas J. Nelson ◽  
William Luttrell ◽  
Brian King ◽  
Scott Postle ◽  
...  

Author(s):  
Gary L. Solbrekken ◽  
Kazuaki Yazawa ◽  
Avram Bar-Cohen

It is well established that the power dissipation for electronic components is increasing. At the same time, high performance portable equipment with volume, weight, and power limitations are gaining widespread acceptance in the marketplace. The combination of the above conditions requires thermal solutions that are high performance and yet small, light, and power efficient. This paper explores the possibility of using thermoelectric (TE) refrigeration as an integrated solution for portable electronic equipment accounting for heat sink and interface material thermal resistances. The current study shows that TE refrigeration can indeed have a benefit over using just a heat sink. Performance maps illustrating where TE refrigeration offers an advantage over an air-cooled heat sink are created for a parametric range of CPU heat flows, heat sink thermal resistances, and TE material properties. During the course of the study, it was found that setting the TE operating current based on minimizing the CPU temperature (Tj), as opposed to maximizing the amount of heat pumping, significantly reduces Tj. For the baseline case studied, a reduction of 20–30°C was demonstrated over a range of CPU heat dissipation. The parametric studies also illustrate that management of the heat sink thermal resistance appears to be more critical than the CPU/TE interfacial thermal resistance. However, setting the TE current based on a minimum Tj as opposed to maximum heat pumping reduces the system sensitivity to the heat sink thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document