Experimental Characterization of an Open Loop Pulsating Heat Pipe Cooler

Author(s):  
Daniele Torresin ◽  
Mathieu Habert ◽  
Francesco Agostini ◽  
Bruno Agostini ◽  
Violette Mounier

Pulsating heat pipes (PHP) have emerged in the last years as suitable cooling devices for dissipating the high heat loads generated by electronic devices since they allow to extend the applicability of air cooling in area nowadays covered by water cooling. Two-phase cooling technologies based on the two phase pulsating heat pipe principle are promising solutions because, being entirely passive they can comply with long term operation without maintenance. The main advantage of a PHP compared to conventional thermosyphon technologies for electronics cooling is that a PHP is orientation independent. The authors has developed a novel, compact, and low cost PHP based on automotive technology. The present paper presents the experimental results of an air cooled open loop pulsating heat pipe with optimized manifold design to minimize fluid pressure drops in the fluid turns. The effect of several parameters including filling ratio and heat load are presented. Tests have been done with the refrigerant fluid R245fa in vertical and horizontal orientations. The measurements showed a maximum thermal resistance ranging between 40 and 48 K/kW in vertical and horizontal position respectively for a heat load of 2 kW and air temperature of 20 °C.

Author(s):  
Sagar Babu Paudel ◽  
Gregory J. Michna

Micro-electronic devices are creating ever-increasing demands on their thermal management systems due to their decreasing size and increasing power. Pulsating heat pipes (PHPs) are one possible solution for electronics cooling applications. A PHP is a passive, two-phase heat transfer system which has been shown to have the advantages of the ability to accommodate very high heat fluxes and of relatively low cost, due to its wickless construction. In this investigation, a 20-turn PHP was constructed out of 1.6-mm inner diameter copper tubing. The PHP was operated in vertical and horizontal positions with a filling ratio of 77%. PHP pressure variations, indicating PHP operation, were first observed when the power was increased to 16 W for the vertical orientation (90°). For angles orientations, in general more power was required to induce pulsation. For the 60°, 45°, and 30° orientations, the required startup power was similar to that for the vertical case. In the PHP in the horizontal orientation (0°), pulsation did not begin until a heater input of 30 W was applied, and the thermal resistance only decreased slightly upon startup. Under steady-state operation at the highest heat fluxes, the thermal resistance was lowest for the vertical orientation.


Author(s):  
Pawan Singh Kathait ◽  
Rajnish N. Sharma

Pulsating heat pipe (PHP) is a two phase highly efficient heat transfer device, due to its simple and flexible construction; it can be manufactured for a variety of applications. PHP works on thermally induced self-sustaining oscillation of liquid plugs and vapor slugs, so it does not have any moving parts either. Ease of manufacturing, potential for high efficiency at different scales and the ability to handle large heat fluxes has the PHP a suitable candidate for microscale electronics cooling or power electronics cooling. However, this technology is still in developing phase and there is at present no comprehensive model which can be used to design a PHP for a specific application. There are many parameters which affect PHP operation and a thorough understanding of the relation between all the variables is first required. The present study is an attempt to investigate experimentally the effects of various parameters on PHP startup, based on startup temperature measurements under varying heat input and carefully controlled conditions. It has been observed that the oscillations in PHP start (startup) as soon as it reaches a minimum temperature corresponding to the minimum Etvos number required for vapor bubble rise.


Author(s):  
Daniele Torresin ◽  
Mathieu Habert ◽  
Violette Mounier ◽  
Francesco Agostini ◽  
Bruno Agostini

A compact and low cost pulsating heat pipe cooler (PHP) based on automotive technology is presented. This technology uses numerous aluminium MultiPort Extruded (MPE) tubes with capillary sized channels disposed in parallel to achieve the desired compactness. The sub-channels of the MPEs are connected in a serpentine manner by means of fluid distribution elements integrated in the evaporator and condenser manifolds. This configuration enables the oscillation of liquid slugs and elongated bubbles between the evaporator and the condenser areas. In the present paper the experimental results of an open loop type PHP with refrigerants fluids R134a and R245fa are presented. Tests have been carried out for air temperatures ranging between −60 and 60 °C at a fixed air flow rate of 480 m3/h and heat loads from 3 to 13 W/cm2. The experimental results show the different thermo-physical properties effect of the two tested fluids on the cooler performances: R134a is more adapted to low saturation temperature than R245fa and the contrary has been observed at high saturation temperatures. This is due to the fact that R245fa reaches its viscous limit at low temperatures while at high temperatures R134a reaches its critical temperature.


Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.


Author(s):  
Jian-Hong Liu ◽  
Fu-Min Shang ◽  
Nikolay Efimov

Abstract Numerical simulation was performed to establishing a two-dimensional pulsating heat pipe model, to investigate the flow and heat transfer characteristics in the pulsating heat pipe by using the Mixture and Euler models, which were unsteady models of vapor-liquid two-phase, based on the control-volume numerical procedure utilizing the semi-implicit method. Through comparing and analyzing the volume fraction and velocity magnitude of gas phase to decide which model was more suitable for numerical simulation of the pulsating heat pipe in heat and mass transfer research. It was showed there had gas phase forming in stable circulation flow in the heating section, the adiabatic section using the Mixture and Euler models respectively, and they were all in a fluctuating state at 10s, besides, the pulsating heat pipe had been starting up at 1s and stabilizing at 5s, it was all found that small bubbles in the heat pipe coalescing into large bubbles and gradually forming into liquid plugs and gas columns from the contours of volume fraction of the gas phase; through comparing the contours of gas phase velocity, it could be seen that there had further stably oscillating flow and relatively stabler gas-liquid two-phase running speed in the pulsating heat pipe used the Mixture model, the result was consistent with the conclusion of the paper[11] extremely, from this it could conclude that the Mixture model could be better simulate the vaporization-condensation process in the pulsating heat pipe, which could provide an effective theoretical support for further understanding and studying the phase change heat and mass transfer mechanism of the pulsating heat pipe.


2015 ◽  
Vol 105 ◽  
pp. 105-112 ◽  
Author(s):  
M. Lutfor Rahman ◽  
Fariha Mir ◽  
Sumaiya Nawrin ◽  
R.A. Sultan ◽  
Mohammad Ali

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Mohammad Hassan Saidi ◽  
Hossein Afshin ◽  
Mohammad Behshad Shafii ◽  
...  

In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location leads to a different thermal resistance in the OLPHP charged with ferrofluid.


Sign in / Sign up

Export Citation Format

Share Document