Conjugate Heat Transfer in a Hexagonal Micro Channel Using Hybrid Nano Fluids

Author(s):  
Shreyas S. Hegde ◽  
Narendran Ganesan ◽  
N. Gnanasekaran

Research is being focused on the use of micro channels with nano fluids as the heat sinks. This requires fundamental understanding of the heat transfer phenomenon in micro channels. The objective of this paper is to present results from a numerical study on laminar forced convection in a Hexagonal Micro Channel (HMC) heat sink. In particular, the numerical study is carried out using a single phase model. The fluid considered is Alumina-Copper hybrid Nano fluid. The performance of Al2O3+Cu+water is compared with Al2O3+water nano fluid and pure water with different volume fractions. The solid region of the channel is assumed as aluminum with a hydraulic diameter of 175μm. The solid and fluid regions of the micro channel are discretized using finite volume method by combining Navier Stokes equation and energy equation for conjugate heat transfer. The thermo physical properties for alumina nanoparticles are calculated by considering it as a spherical particle of 45nm diameter. The effect of surface roughness on convective heat transfer coefficient and pressure drop for the case of nano fluids is also considered. The analysis is further extended by adding pulsating input and by varying the velocity sinusoidally. The Brownian motion of nano particles is increased to study the efficiency of the heat sink. This ensures all the nano particles are in suspension and the randomness increases the micro convection in the fluid. Incorporating the pulsating flow increases the dispersion of the heat in the nano fluid at a faster rate and also decreases particle settlement in laminar flow. The combined effect of surface roughness and pulsating flow accounts for the change in the velocity profile and thermal boundary layer of the channel. Also the effect of surface roughness ranging from 0.2–0.6 is attempted and the variations in pressure drop, Nusselt number, and heat transfer coefficient are studied. The influence of hexagonal geometry and its interaction with alumina nano fluids is intensively studied by evaluating a three dimensional conjugate heat transfer model. The effect of side wall angle of 45°, 50° and 55° are computed to relate the velocity function with pressure drop, surface roughness and local heat transfer coefficient. The variation of Nusselt number with very low volume fraction of nano particles with a minimal amount of pressure drop is also presented.

2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


Author(s):  
S Emami ◽  
MH Dibaei Bonab ◽  
M Mohammadiun ◽  
H Mohammadiun ◽  
M Sadi

Few papers investigated the effect of different nano-fluids and geometrical parameters of the micro channels on the performance of heat sinks. In this study, Nusselt number and pressure drop are investigated in differential geometry and Reynolds numbers. Then the effect of the micro-channel is studied for different heat flux. The results show that hexagonal micro-channels represents a better performance than the rectangular and the heat transfer of without using nano-particles in the hexagonal cross-section is about 9% higher than the rectangular cross-section and with the presence of nanoparticles (Al2O3 - CUO- TiO2, φ  =  4%), heat transfer is about 30 to 40% higher than the base liquid.


2020 ◽  
Vol 10 (4) ◽  
pp. 1255
Author(s):  
Liping Zeng ◽  
Xing Liu ◽  
Quan Zhang ◽  
Jun Yi ◽  
Xiaohua Li ◽  
...  

This paper mainly studies the heat transfer performance of backplane micro-channel heat pipes by establishing a steady-state numerical model. Compared with the experimental data, the heat transfer characteristics under different structure parameters and operating parameters were studied, and the change of heat transfer coefficient inside the system, the air outlet temperature of the back plate and the influence of different environmental factors on the heat transfer performance of the system were analyzed. The results show that the overall error between simulation results and experimental data is less than 10%. In the range of the optimal filling rate (FR = 64.40%–73.60%), the outlet temperature at the lowest point and the highest point of the evaporation section is 22.46 °C and 19.60 °C, the temperature difference does not exceed 3 °C, and the distribution gradient in vertical height is small and the air outlet temperature is uniform. The heat transfer coefficient between the evaporator and the condenser is larger than the heat transfer coefficient under the conditions of low and high liquid charge rate. It increases gradually along the flow direction, and decreases gradually with the flow rate of the condenser. When the width of the flat tube of the evaporator increases from 20 mm to 28 mm, the internal pressure drop of the evaporator decreases by 45.83% and the heat exchange increases by 18.34%. When the number of evaporator slices increases from 16 to 24, the heat transfer increases first and then decreases, with an overall decrease of 2.86% and an increase of 87.67% in the internal pressure drop of the evaporator. The inclination angle of the corrugation changes from 30° to 60°, and the heat transfer capacity and pressure drop increase. After the inclination angle is greater than 60°, the heat transfer capacity and resistance decrease. The results are of great significance to system optimization design and engineering practical application.


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhibo Zhang ◽  
Huai-En Hsieh ◽  
Yuan Gao ◽  
Shiqi Wang ◽  
Jia Gao ◽  
...  

Abstract In this study, the pool boiling performance of oxide nanofluid was investigated, the heating surface is a 5 × 30 mm stainless steel heating surface. Three kinds of nanofluids were selected to explore their critical heat flux (CHF) and heat transfer coefficient (HTC), which were TiO2, SiO2, Al2O3. We observed that these nanofluids enhanced CHF compared to R·O water, and Al2O3 case has the most significant enhancement (up to 66.7%), furthermore, the HTC was also enhanced. The number of bubbles in nanofluid case was relatively less than that in R·O water case, but the bubbles were much larger. The heating surface was characterized and it was found that there were nano-particles deposited, and surface roughness decreased. The wettability also decreased with the increase in CHF.


Author(s):  
Sebastian Scholl ◽  
Catherine Gorle ◽  
Farzad Houshmand ◽  
Tanya Liu ◽  
Hyoungsoon Lee ◽  
...  

This study considers CFD simulations with conjugate heat transfer performed in the framework of designing a complex micro-scale cooling geometry. The numerical investigation of the three-dimensional, laminar flow (Reynolds number smaller than 480) and the solid conduction is done on a reduced model of the heat sink micro-structure to enable exploring a variety of configurations at a limited computational cost. The reduced model represents a unit-cell, and uses periodic and symmetry boundary conditions to mimic the conditions in the entire cooling manifold. A simulation of the entire heat sink micro-structure was performed to verify the unit-cell set-up, and the comparison demonstrated that the unit-cell simulations allow reducing the computational cost by two orders of magnitude while retaining accurate results. The baseline design for the unit-cell represents a configuration used in traditional electronic heat sinks, i.e. a simple channel geometry with a rectangular cross section, with a diameter of 50 μm, where the fluid flows between two cooling fins. Subsequently three types of modified geometries with feature sizes of 50 μm were considered: baffled geometries that guide the flow towards the hotspot region, geometries where the fins are connected by crossbars, and a woodpile structure without cooling fins. Three different mass-flow rates were tested. Based on the medium mass-flow rate considered, the woodpile geometry showed the highest heat transfer coefficient with an increase of 70% compared to the baseline geometry, but at the cost of increasing the pressure drop by more than 300%. The crossbar geometries were shown to be promising configurations, with increases in the heat transfer coefficient of more than 20% for a 70% increase in pressure drop. The potential for further optimization of the crossbar configurations by adding or removing individual crossbars will be investigated in a follow up study. The results presented demonstrate the increase in performance that can be obtained by investigating a variety of designs for single phase cooling devices using unit-cell conjugate heat transfer simulations.


Sign in / Sign up

Export Citation Format

Share Document