Numerical Investigation of Transition of Flow Condensation in Microchannel

Author(s):  
Il Seouk Park ◽  
Jong Hyeon Son

Due to the miniaturization of electronic devices and advanced machines, the micro-channel phase change heat transfer is used for heat removal on limited surfaces. However, since the complexity of the phase change phenomenon, it is difficult to numerically analyze the phase change phenomenon inside the microchannel. In this study, the flow condensation problem of FC-72 fluid in a microchannel is numerically analyzed with the phase change model. SST k-omega turbulence model is used and Volume of Fluid method is used for tracking the gas-liquid interface inside micro-channels. The condensation phenomenon is analyzed by applying the phase change model based on the difference of the phase interface and saturated temperature. The transition of two-phase flow pattern, cross-sectional velocity profiles in a micro-channel are studied according to the inlet mass flux and the heat flux at the channel wall surface. The heat transfer coefficient was compared with the experimental results and it is confirmed that the heat transfer coefficient at the wall increase when the inlet mass flux increase. Also, the channel wall side surface temperature profiles, changes of isotherms, and velocity vector field inside channel due to liquid-phase creation are presented.

Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 217 ◽  
Author(s):  
Joanna Krasoń ◽  
Przemysław Miąsik ◽  
Lech Lichołai ◽  
Bernardeta Dębska ◽  
Aleksander Starakiewicz

The article presents a comparative analysis carried out using three methods, determining the heat transfer coefficient U for a ceramic product modified with a phase change material (PCM). The purpose of the article is to determine the convergence of the resulting thermal characteristics, obtained using the experimental method, numerical simulation, and standard calculation method according to the requirements of PN-EN ISO 6946. The heat transfer coefficient is one of the basic parameters characterizing the thermal insulation of a building partition. Most often, for the thermal characteristics of the partition, we obtain from the manufacturer the value of the thermal conductivity coefficient λ for individual homogeneous materials or the heat transfer coefficient U for the finished (prefabricated) partition. In the case of a designed composite element modified with a phase change material or other material, it is not possible to obtain direct information on the above parameter. In such a case, one of the methods presented in this article should be used to determine the U factor. The U factor in all analyses was determined in stationary conditions. Research has shown a significant convergence of the resulting value of the heat transfer coefficient obtained by the assumed methods. Thanks to obtaining similar values, it is possible to continue tests of thermal characteristics of partitions by means of numerical simulation, limiting the number of experimental tests (due to the longer test time required) in assumed different partition configurations, in stationary and dynamic conditions.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


Author(s):  
Wei Li ◽  
Chuancai Zhang ◽  
Zhichuan Sun ◽  
Zhichun Liu ◽  
Lianxiang Ma ◽  
...  

Experimental investigation was performed to measure the evaporation heat transfer coefficients of R410A inside three three-dimensional enhanced tubes (1EHT-1, 1EHT-2 and 4LB). The inner and outer enhanced surface of the 4LB tube is composed by arrays of grooves and square pits, while 1EHT-1 tube and 1EHT-2 tube consist of longitudinal ripples and dimples of different depths. All these tubes have an inner diameter of 8.32 mm and an outer diameter of 9.52 mm. Experiment operational conditions are conducted as follows: the saturation temperature is 279 K, the vapor quality ranges from 0.2 to 0.8, and the mass flux varies from 160 kg/(m2·s) to 380 kg/(m2·s). With the mass flux increasing, the heat transfer coefficient increases accordingly. The heat transfer coefficient of 1EHT-2 is the highest of all three tubes, and that of 1EHT-1 is the lowest. The heat transfer coefficient of 4LB ranks between the 1EHT-1 and 1EHT-2 tube. The reason is that the heat transfer areas of the 1EHT-2 and 4LB tube are larger than that of 1EHT-1 and interfacial turbulence is enhanced in 1EHT-2.


2020 ◽  
Vol 10 (4) ◽  
pp. 1255
Author(s):  
Liping Zeng ◽  
Xing Liu ◽  
Quan Zhang ◽  
Jun Yi ◽  
Xiaohua Li ◽  
...  

This paper mainly studies the heat transfer performance of backplane micro-channel heat pipes by establishing a steady-state numerical model. Compared with the experimental data, the heat transfer characteristics under different structure parameters and operating parameters were studied, and the change of heat transfer coefficient inside the system, the air outlet temperature of the back plate and the influence of different environmental factors on the heat transfer performance of the system were analyzed. The results show that the overall error between simulation results and experimental data is less than 10%. In the range of the optimal filling rate (FR = 64.40%–73.60%), the outlet temperature at the lowest point and the highest point of the evaporation section is 22.46 °C and 19.60 °C, the temperature difference does not exceed 3 °C, and the distribution gradient in vertical height is small and the air outlet temperature is uniform. The heat transfer coefficient between the evaporator and the condenser is larger than the heat transfer coefficient under the conditions of low and high liquid charge rate. It increases gradually along the flow direction, and decreases gradually with the flow rate of the condenser. When the width of the flat tube of the evaporator increases from 20 mm to 28 mm, the internal pressure drop of the evaporator decreases by 45.83% and the heat exchange increases by 18.34%. When the number of evaporator slices increases from 16 to 24, the heat transfer increases first and then decreases, with an overall decrease of 2.86% and an increase of 87.67% in the internal pressure drop of the evaporator. The inclination angle of the corrugation changes from 30° to 60°, and the heat transfer capacity and pressure drop increase. After the inclination angle is greater than 60°, the heat transfer capacity and resistance decrease. The results are of great significance to system optimization design and engineering practical application.


Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Steve Q. Cai ◽  
Avijit Bhunia

In a heat pipe, operating fluid saturates wick structures system and establishes a capillary-driven circulation loop for heat transfer. Thus, the thermophysical properties of the operating fluid inevitably impact the transitions of phase-change mode and the capability of heat transfer, which determine both the design and development of the associated heat pipe systems. This article investigates the effect of liquid properties on phase-change heat transfer. Two different copper wick structures, cubic and cylindrical in cross section, 340 μm in height and 150 μm in diameter or width, are fabricated using an electroplating technique. The phase-change phenomena inside these wick structures are observed at various heat fluxes. The corresponding heat transfer characteristics are measured for three different working liquids: water, ethanol, and Novec 7200. Three distinct modes of the phase-change process are identified: (1) evaporation on liquid–vapor interface, (2) nucleate boiling with interfacial evaporation, and (3) boiling enhanced interface evaporation. Transitions between the three modes depend on heat flux and liquid properties. In addition to the mode transition, liquid properties also dictate the maximum heat flux and the heat transfer coefficient. A quantitative characterization shows that the maximum heat flux scales with Merit number, a dimensionless number connecting liquid density, surface tension, latent heat of vaporization, and viscosity. The heat transfer coefficient, on the other hand, is dictated by the thermal conductivity of the liquid. A complex interaction between the mode transition and liquid properties is reflected in Novec 7200. In spite of having the lowest thermal conductivity among the three liquids, an early transition to the mode of the boiling enhanced interface evaporation leads to a higher heat transfer coefficient at low heat flux.


Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Sign in / Sign up

Export Citation Format

Share Document