Study on Simulation, Control and Online Assistance Integrated System of 10MW High Temperature Gas-Cooled Test Reactor

Author(s):  
Shaojie Luo ◽  
Lei Shi ◽  
Shutang Zhu

In order to provide a convenient tool for engineering designed, safety analysis, operator training and control system design of the high temperature gas-cooled test reactor (HTR), an integrated system for simulation, control and online assistance of the HTR-10 has been designed and is still under development by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China. The whole system is based on a network environment and includes three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four parts: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate each other via network. The SIMUSUB is intended to analyze and calculate the physical processes of the reactor core, the main loop system and the stream generator, etc., as well as to simulate the normal operation and transient accidents, and the result data can be graphically displayed through the RGDC dynamically. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameter, which are difficult to measure. This whole system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online supports for operators in the main control room, or as a convenient powerful tool for the control system design.

1986 ◽  
Vol 4 (3) ◽  
pp. 317-321 ◽  
Author(s):  
M. E. Thompson ◽  
H. F. Dylla ◽  
P. H. LaMarche ◽  
N. D. Arnold ◽  
W. A. Rauch ◽  
...  

Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


Sign in / Sign up

Export Citation Format

Share Document