Experiments on Damping of Acoustic Waves in Water-Filled Pipes

Author(s):  
Vijay Chatoorgoon ◽  
Qizhao Li

A simple, fundamental experimental study was conducted to better understand acoustic wave propagation is fluid-filled pipes. Three experiments were undertaken: the first with zero flow and a closed outlet end, the second with turbulent flow and an open outlet end and the third with zero flow and an open outlet end. The intent was to obtain data for model comparison and to determine the effect of turbulent flow on the system response. New insights are obtained and reported.

2015 ◽  
Vol 137 (4) ◽  
pp. 2440-2440
Author(s):  
Konstantin Dmitriev ◽  
Alisa Dorofeeva ◽  
Sergei Sergeev

2006 ◽  
Vol 21 (supp01) ◽  
pp. 30-34 ◽  
Author(s):  
GERD MANTHEI ◽  
JÜRGEN EISENBLÄTTER ◽  
THOMAS SPIES

Rock salt is a promising material for the detection of acoustic waves generated by interactions of high energy neutrinos. The economical feasibility of an acoustic neutrino detector strongly depends on the spacing between the acoustic sensors. In this paper we report on our experience on acoustic wave propagation and wave attenuation in rock salt in the frequency range of 1 to 100 kHz and some conclusions with respect to the usefulness of rock salt as a neutrino detector. The experience bases on long-term acoustic emission measurements in a salt mine.


1994 ◽  
Author(s):  
Sridhar Rudraraju ◽  
Anbo Wang ◽  
Kent A. Murphy ◽  
Richard O. Claus

1961 ◽  
Vol 1 (04) ◽  
pp. 235-248 ◽  
Author(s):  
J. Geertsma

Abstract Tbe relationsbip between porosity and the speed of propagation of acoustic waves in fluid-saturated porous rocks as measured by the Sonic log and by ultrasonic techniques is analyzed. Biot's continuum theory is used to explain the difference in acoustic wave propagation between a dry and a liquid-saturated porous material. The porosity is a variable in this theory. However, the acoustic wave propagation in the dry rock depends too on porosity, and this dependence is not predicted by the theory. Frequently in dry sandstones, a nearly linear relationsbip between reciprocal acoustic wave velocity and porosity is observed in the low-porosity range. The physics behind this behavior is outlined. An empirical relationship of the form, 1/V ~ A + B ø, applies accordingly for many porous dry rocks, provided the porosity is the only variable. The presence of a liquid in the pores changes the value of B, and this change is found to be in agreement with the Biot theory. The time-average relation introduced some years ago results in an equation of the same type 1/V = ø/Vf + (1 - ø)/Vr - but is not based on a sound physical picture. Still, this relation sometimes predicts approximately correct A and B values. Carbonate rocks with their complicated pore structures sometimes show a different relationship between wave velocity and porosity, unfavorable for log interpretation. Examples are presented. The simultaneous presence of calcite, dolomite and anhydrite, with their different grain densities and matrix compressibilities, complicates acoustic-log interpretation in carbonate rocks still further. Other complicating effects of acoustic-log interpretation are discussed. They are related to the influence of shale streaks and natural fractures on the average wave velocity observed by the logging tool and to the effect of adsorption phenomena on wave propagation in unstressed rocks particularly in sandstones.


Sign in / Sign up

Export Citation Format

Share Document