Subcooled Flow Boiling in a Rectangular Channel With Added Turbulence and Longitudinal Vortices

Author(s):  
Gregor Bloch ◽  
Christina Jochum ◽  
Tobias Schechtl ◽  
Thomas Sattelmayer

Experiments are conducted to analyze the influence of turbulence and secondary flows on heat transfer and CHF in sub-cooled flow boiling. Inserts creating turbulence and stationary vortices are placed below a vertical channel with a heated wall and upward flow direction with flow velocities up to 1.2 m/s. The boiling chamber is of square shape with inner dimensions of 40 × 40 mm2. Boiling regimes range from onset of nucleate boiling up to fully developed film boiling. Influence of the inserts is measured for varying flow velocities and subcooling from 4 K to 27 K. Flow parameters are measured with Particle Image Velocimetry (PIV). A decay of nearly isotropic turbulence within only few diameters is observed, while stationary swirls exhibit longer penetration depths. Boiling experiments are conducted with unsteady heating with a low boiling hydrocarbon (dodekafluoromethylpentanone) as working fluid. Results from boiling experiments show a positive influence of the inserts on the boiling process, increasing with higher subcooling and flow velocities.

Author(s):  
Filippo Coletti ◽  
Irene Cresci ◽  
Tony Arts

The present contribution addresses the effect of Coriolis and buoyancy forces in a rotating rectangular channel having one wall provided with ribs perpendicular to the flow direction. Time-resolved PIV measurements are performed in a rotating facility where both the channel model and the measurement system rotate on a turntable at 134 rpm. Air is used as working fluid. The Reynolds number defined by the bulk velocity and the hydraulic diameter is 15000, and a rotation number of 0.38 is obtained both in clockwise and counter-clockwise sense. The ribbed wall, machined out of copper, is heated to a uniform temperature of about 100°C by means of electrical resistances. This allows to obtain a centrifugal buoyancy number of 0.31. Velocity fields are measured along the channel symmetry plane using a continuous laser diode and a high-speed camera. Both ensemble-averaged and time-resolved measurements are performed. In the latter case the realizations are acquired at 3.3 KHz, allowing to resolve the fine temporal flow scales. The effects of the rotational buoyancy with respect to the action of the Coriolis forces alone are highlighted. Particular attention is drawn to the extension of the separated area behind the rib, as well as to the length scales and time scales of the structures generated on the separated shear layer behind the ribs. Vortical structures are identified as regions of strong swirl having both spatial and temporal coherence. The rotational buoyancy near the heated wall affects strongly the physical characteristics, distribution and trajectory of such structures, which are critical for the turbulent transport and heat transfer.


Author(s):  
Kan Zhou ◽  
Junye Li ◽  
Zhao-zan Feng ◽  
Wei Li ◽  
Hua Zhu ◽  
...  

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.


Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Alessandra Diana

Natural convection in horizontal rectangular channel without or with aluminum foam is experimentally and numerically investigated. In the case with aluminum foam the channel is partially filled. In both cases, the bottom wall of the channel is heated at a uniform heat flux and the upper wall is unheated and it is not thermally insulated to the external ambient. The experiments are performed with working fluid air. Different values of wall heat flux at lower surface are considered in order to obtain some Grashof numbers and different heated wall temperature distributions. Two different aluminum foams are considered in the experimental investigation, one from “M-pore”, with 10 and 30 pore per inch (PPI), and the other one from “ERG”, with 10, 20 and 40 PPI. The numerical simulation is carried out by a simplified two-dimensional model. It is found that the heat transfer is better when the channel is partially filled and the emissivity is low, whereas the heated wall temperature values are higher when the channel is partially filled and the heated bottom plate has high emissivity. The investigation is achieved also by flow visualization which is carried out to identify the main flow shape and development and the transition region along the channel. The visualization of results, both experimental and numerical, grants the description of secondary motions in the channel.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Yuhao Lin ◽  
Junye Li ◽  
Kan Zhou ◽  
Wei Li ◽  
Kuang Sheng ◽  
...  

Abstract The micro structured surfaces have significant impact on the flow patterns and heat transfer mechanisms during the flow boiling process. The hydrophobic surface promotes bubble nucleation while the hydrophilic surface supplies liquid to a heating surface, thus there is a trade-off between a hydrophobic and a hydrophilic surface. To examine the effect of heterogeneous wetting surface on flow boiling process, an experimental investigation of flow boiling in a rectangular vertical narrow microchannel with the heterogeneous wetting surface was conducted with deionized water as the working fluid. The heat transfer characteristics of flow boiling in the microchannel was studied and the flow pattern was photographed with a high-speed camera. The onset of flow boiling and heat transfer coefficient were discussed with the variation of heatfluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. During the boiling process, the dominated heat transfer mechanism was nucleate boiling, with numerous nucleate sites between the hydrophilic/hydrophobic stripes and on the hydrophobic ones. In the meantime, after the merged bubbles were constrained by the channel walls, it would be difficult for them to expand towards upstream since they were restricted by the contact line between hydrophilic/hydrophobic stripes, thereby reduce the flow instability and achieve remarkable heat transfer performance.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Andrew F Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Robert Krewinkel

The present study features a two-pass rectangular channel with an aspect ratio (AR) = 4:1 in the first pass and an AR = 2:1 in the second pass after a 180-deg tip turn. In addition to the smooth-wall case, ribs with a profiled cross section are placed at 60 deg to the flow direction on both the leading and trailing surfaces in both passages (P/e = 10, e/Dh ∼ 0.11, parallel and in-line). Regionally averaged heat transfer measurement method was used to obtain the heat transfer coefficients on all internal surfaces. The Reynolds number (Re) ranges from 10,000 to 70,000 in the first passage, and the rotational speed ranges from 0 to 400 rpm. Under pressurized condition (570 kPa), the highest rotation number achieved was Ro = 0.39 in the first passage and 0.16 in the second passage. The results showed that the turn-induced secondary flows are reduced in an accelerating flow. The effects of rotation on heat transfer are generally weakened in the ribbed case than the smooth case. Significant heat transfer reduction (∼30%) on the tip wall was seen in both the smooth and ribbed cases under rotating condition. Overall pressure penalty was reduced for the ribbed case under rotation. Reynolds number effect was found noticeable in the current study. The heat transfer and pressure drop characteristics are sensitive to the geometrical design of the channel and should be taken into account in the design process.


Author(s):  
Sira Saisorn ◽  
Pochai Srithumkhant ◽  
Pakorn Wongpromma ◽  
Maturose Suchatawat ◽  
Somchai Wongwises

Two-phase flow of R-134a with high confinement number was experimentally carried out in this study. Flow boiling conditions for different orientations were controlled to take place in a stainless steel tube having a diameter of 0.5 mm. Based on a saturation pressure of 8 bar, a heat flux range of 2–26 kW/m2, and a mass flux range of 610–815 kg/m2s, a constant surface heat flux condition was controlled by applied DC power supply on the test section. The flow behaviors were described based on flow pattern and pressure drop data while heat transfer mechanisms were explained by using heat transfer coefficient data. In this work, nucleate boiling was observed, and the importance of the change in the flow direction was neglected, corresponding to the confinement number of around 1.7.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Gulshan Kumar Sinha ◽  
Atul Srivastava

Abstract Accurate prediction of bubble dynamic parameters is essential to improve boiling heat transfer models. Considering the complexities and challenges associated with performing a large number of boiling experiments, researchers have realized the importance of experimental correlations for predicting bubble dynamic parameters. In this direction, we report an experimental work concerned with the development of correlations for various bubble liftoff parameters during nucleate flow boiling regime. As a definite advancement, the experimental measurements have been performed in a purely nonintrusive manner, thereby minimizing the errors arising due to the interaction of any external probe with the process under study. The measurement approach makes use of a gradient-based imaging technique to simultaneously map the bubbling features and thermal field around a single vapor bubble generated under subcooled flow boiling conditions. Experiments have been performed in a rectangular channel for a wide range of heat fluxes (q" = 20–50 kW/m2), subcooling level (ΔTsub = 2–9 K), and Reynolds numbers (Re = 600–6000) with water as the working fluid. Results show a strong dependence of bubble liftoff parameters on Reynolds number, subcooling level, and applied heat flux. Based on the experimental measurements, empirical correlations have been developed for various bubble liftoff parameters as a function of Jacob number and Reynolds number. Predictions made through the developed correlations are found to be in good agreement with the measured values as well as with the values reported in the available literature. Of all the bubble parameters, maximum deviation between the predicted and measured values (≈23%) was found to be in bubble release frequency.


Author(s):  
Hui Zhang ◽  
Issam Mudawar ◽  
Mohammad M. Hassan

Experiments were performed to examine the effects of body force on flow boiling CHF. FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities under 0.2 m/s, where extremely low CHF values where measured, especially with a downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations for different orientations and velocities. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and downflow orientations.


Sign in / Sign up

Export Citation Format

Share Document