Comparison and Analysis on Two Kinds of Passive Residual Heat Removal System Designs Under Station Blackout Accident for Integral Small Modular Reactor

Author(s):  
Fei Li ◽  
Feng Shen ◽  
Ning Bai ◽  
Zhaocan Meng

Small Modular Reactor has gained much attention in recent years. The passive residual heat removal system (PRHRS) is designed to increase the inherent safety features of the Integral Small Modular Reactor. There are many differences on the design of PRHRS. To get a comprehensive understanding of the PRHRS design in ISMRs, two simplified simulation models of ISMRs with different PRHRS design are built by the use of thermal hydraulic system code Relap5/Mod3.2 in this paper. A blackout accident is introduced to study the different performance between two PRHRS design models. The calculation results show that both two cases can successfully remove decay heat from the core. But there are still some differences between two cases in aspects of primary and PRHRS coolant parameters. Comparisons of the results from two cases are conducted in this paper, and the differences are carefully analyzed too.

2014 ◽  
Vol 986-987 ◽  
pp. 231-234
Author(s):  
Jun Teng Liu ◽  
Qi Cai ◽  
Xia Xin Cao

This paper regarded CNP1000 power plant system as the research object, which is the second-generation half Nuclear Reactor System in our country, and tried to set Westinghouse AP1000 passive residual heat removal system to the primary circuit of CNP1000. Then set up a simulation model based on RELAP5/MOD3.2 program to calculate and analyze the response and operating characteristic of passive residual heat removal system on assumption that Station Blackout occurs. The calculation has the following conclusions: natural circulation was quickly established after accident, which removes core residual heat effectively and keep the core safe. The residual heat can be quickly removed, and during this process the actual temperature was lower than saturation temperature in reactor core.


2012 ◽  
Vol 45 ◽  
pp. 86-93 ◽  
Author(s):  
Mingjun Wang ◽  
Hao Zhao ◽  
Yapei Zhang ◽  
Guanghui Su ◽  
Wenxi Tian ◽  
...  

Author(s):  
Xiaodong Lu ◽  
Chuanxin Peng ◽  
Yan Zhang ◽  
Xuesong Bai ◽  
Yuanfeng Zan ◽  
...  

An experimental research on performance characteristics of passive residual heat removal system (PRHRS) for the small modular reactor designed by Nuclear Power Institute of China (NPIC) under the station blackout accident was performed in the CREAS facility, which consists of the primary system, the secondary system, the passive safety injection system, the passive residual heat removal system, the overpressure protection system and the auxiliary system. The experimental results show that, after the station blackout accident, a stable two-phase natural circulation between the steam generators and the heat exchanger in the PRHRS was established with a mass flow of 0.4T/h, thus the heat from the primary system was removed to the water in the containment water tank (CWT). During this period, the core decay residual heat and the sensible heat were removed from the primary system by the PRHRS effectively. The cold water from the core makeup tanks was injected into the reactor pressure vessel for core cooling. The peaked primary pressure was 16.3MPa and less than relief valve opening pressure 16.9MPa. In addition, the average coolant temperature of the reactor core reduced below 483 K, and the reactor operated safely.


2020 ◽  
Vol 52 (5) ◽  
pp. 964-974 ◽  
Author(s):  
Min Wook Na ◽  
Doyoung Shin ◽  
Jae Hyung Park ◽  
Jeong Ik Lee ◽  
Sung Joong Kim

Author(s):  
Ran Xu

Passive systems are widely used in nuclear power plants, to enhance the inherent safety of the plant. Especially in the accident of station blackout, Passive Residual Heat Removal system (PRHR) which is installed on the secondary side of steam generator (SG), highly resolved the problem of the residual heat removal after reactor trip. The plant safety is improved largely by PRHR, this is the trend of the new plant design. A water tank is commonly mounted on the passive residual heat removal system (PRHR) of steam generator secondary side, which heavily impacts the performance and the startup procedure of PRHR. Moreover, there are many different types of tank layout in various plants design. Therefore it is necessary to study the thermal hydraulic feature of the different type the PRHR tank set. In this paper, the station blackout accident is chosen to verify the performance of the tank set. Then the assessment criteria of PRHR is established from a thermal hydraulic perspective. RELAP5/mod3.2 is adopted to simulate the accident. Based on the performance comparison of different tank sets, the best tank layout is selected, which is selected for the engineering practice. At last, the comparison of the predicted results and the test data is done to verify the performance of selected tank set design.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Feng Li ◽  
Yazhe Lu ◽  
Xiao Chu ◽  
Qiang Zheng ◽  
Guanghao Wu

In response to a station blackout accident similar to the Fukushima nuclear accident, China’s Generation III nuclear power HPR1000 designed and developed a passive residual heat removal system connected to the secondary side of the steam generator. Based on the two-phase natural circulation principle, the system is designed to bring out long-term core residual heat after an accident to ensure that the reactor is in a safe state. The steady-state characteristic test and transient start and run test of the PRS were carried out on the integrated experiment bench named ESPRIT. The experiment results show that the PRS can establish natural circulation and discharge residual heat of the first loop. China’s Fuqing no. 5 nuclear power plant completed the installation of the PRS in September 2019 and carried out commissioning work in October. This debugging is the first real-world debugging of the new design. This paper introduces the design process of the PRS debugging scheme.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Putu Brahmanda Sudarsana ◽  
Wayan Nata Septiadi ◽  
Mulya Juarsa

SMART (System-Integrated Advanced Modular Reactor) merupakan desain reaktor multifungsi Generasi III+ tipe SMR (Small Modular Reactor) yang dikembangkan oleh KAERI (Korean Atomic Energy Research Institute) dengan kapabilitas produksi listrik 107 MWe dan energi termal 365 MWt. Sistem SMART meliputi berbagai fitur keselamatan untuk mengatasi LOCA (Loss of Coolant Accident) dan skenario kecelakaan lainnya. Salah satu dari fitur tersebut adalah Passive Residual Heat Removal System (PRHRS) atau sistem pembuang sisa panas pasif yang bekerja tanpa membutuhkan sumber daya elektrik. Sistem ini bekerja sesuai dengan prinsip sirkulasi alam sehingga bergantung pada aspek termal, tekanan, dan pengaruhnya terhadap aliran massa. Ketiga aspek tersebut dapat mempengaruhi kapabilitas pembuangan panas pada sistem. Data performa PRHRS reaktor SMART pada beberapa kondisi kecelakaan yang diperoleh melalui studi eksperimental maupun simulasi termohidrolika dianalisis pada kajian ini. Hasil analisis menunjukkan unjuk kerja pembuangan sisa panas yang baik oleh PRHRS SMART dengan waktu aktuasi yang tepat dan pendinginan yang stabil. Dengan kapabilitas multifungsi dan kemampuan pendinginan yang baik pada berbagai skenario kecelakaan, SMART memiliki potensi tinggi untuk kelak diterapkan di Indonesia.


2016 ◽  
Vol 89 ◽  
pp. 56-62 ◽  
Author(s):  
Yeon-Sik Kim ◽  
Sung-Won Bae ◽  
Seok Cho ◽  
Kyoung-Ho Kang ◽  
Hyun-Sik Park

Sign in / Sign up

Export Citation Format

Share Document