Study on the Design Methodology of Swirl Nozzle for Nuclear Reactor Pressurizer

Author(s):  
Xiong Cao ◽  
Zhiwei Ding

Pressurizer is one of the most important components in reactor coolant system of a nuclear power plant, which operates normally at pressure of 15.4 MPa and temperature of 345°C[1]. The main function of pressurizer is to regulate the pressure in the reactor coolant system by either cooling the steam or heating the saturated water in its upper zone. When the pressure in the reactor coolant system increases, it will distribute cold water to decrease its temperature and pressure through atomizing the reactor coolant with swirl spray nozzle in pressurizer. Swirl nozzle is the key part of pressurizer with swirl structure of full cone spray pattern, and the atomization performance include drop size, spray angle and distribution, also it is characterized by huge flow rate and low pressure drop, and its atomization performance decides the quality of pressure control of the reactor coolant system. To enhance the independent design level of both pressurizer and cooling system, it’s necessary to study the atomization performance of swirl nozzle for nuclear reactor pressurizer. Aimed at improving atomization performance of swirl spray nozzle, the structure design methodology of nuclear reactor pressurizer was studied systematically in three aspects including theory design, numerical simulation and test confirm in this thesis. Through designing the swirl nozzle structure according to similar design formula of spray nozzle in theory, especially studying the influence of different structures that mainly include internal swirl structure on internal flow field of swirl nozzles, the primary structure parameters of swirl nozzle were confirmed. Then, through numerical simulation of the internal flow field, flow rate and pressure drop, and swirl core structure of the swirl nozzle (by building physical model and mathematic model according to the spray nozzle structure), the atomization performance of the nozzle was analyzed. On this basis, the typical swirl nozzle was designed and tested, which included spray angle, flow rate as well as pressure drop tests, and spray drop tests, and the applicability of the computational fluid dynamics (CFD) method was verified when it was applied in swirl nozzle design. Finally, the design method of swirl nozzle with deep groove of swirl core for pressurizer was put forward. Through this studying of theoretical calculation, numerical simulating and test, the correlation between the structural parameters of swirl nozzle and atomization performance was achieved, meanwhile design, analysis and test methods of spray nozzle with low pressure drop and huge flow rate were established. It is helpful to realize the independent design of pressurizer’s swirl nozzle and even to put forward the design methodology of pressurizer’s swirl nozzle with our own characteristic.

Author(s):  
Qing-fei Fu

This paper presents the simulation study of internal flow of open-end swirl injectors under steady and oscillating ambient pressures. A two-dimensional swirl axisymmetric model based on the volume of fluid method was developed to study the effect of ambient pressure on the internal flow of open-end swirl injectors. The response of injector flow to the ambient pressure oscillation was investigated by superimposing periodical oscillation of ambient pressure at the spout outlet. The results show that the variation of ambient pressure affects the liquid phase volumetric fraction within the gas–liquid shear layer. The spray angle near the wall remains constant independent of the ambient pressure. The velocity distribution on different axial sections rarely varies with ambient pressure. When the ambient pressure oscillated, the ambient pressure oscillation would cause the flow rate oscillation at the spout. The phase delay between the flow rate oscillation at spout and the ambient pressure oscillation is proportional to the oscillation frequency.


2014 ◽  
Vol 721 ◽  
pp. 73-77 ◽  
Author(s):  
Wei Nan Jin ◽  
Rong Xie ◽  
Mu Ting Hao ◽  
Xiao Fang Wang

To study the effects of guide vane with different vane wrap angles and relative positions of outlet edge on hydraulic performance of nuclear reactor coolant pump, three-dimensional steady numerical simulations were performed by using CFD commercial software Numeca. The results show that the vane wrap angle changes the head and power characteristics by changing the relative velocity angle in vane outlet. The inner flow field changes while the wrap angle changes. With the wrap angle increases, the shock loss in volute is reducing, but the friction loss in vane passages is getting large. So there exists an optimum wrap angle and relative positions of outlet edge that corresponds to the highest efficiency of a pump. Numerical simulation is performed with the two key design parameters optimized through surrogate model, the internal flow field is improved and then the hydraulic efficiency is improved.


2020 ◽  
Vol 326 (1) ◽  
pp. 665-674
Author(s):  
Hee-Chul Eun ◽  
Sang-Yoon Park ◽  
Wang-Kyu Choi ◽  
Seon-Byeong Kim ◽  
Hui-Jun Won ◽  
...  

2000 ◽  
Vol 183-187 ◽  
pp. 975-980 ◽  
Author(s):  
Jae Do Kwon ◽  
Seung Wan Woo ◽  
Y.S. Lee ◽  
Jong Chul Park ◽  
Youn Won Park

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Dan Ni ◽  
Minguan Yang ◽  
Ning Zhang ◽  
Bo Gao ◽  
Zhong Li

Severe vibrations induced by flow instabilities in the nuclear reactor coolant pump (RCP) are detrimental to the safe operation of the pump. Due to the particular spherical casing in the RCP, the internal flow structures are extremely ambiguity and complicated. The goal of the present work is to shed comprehensive light on the unsteady flow structures and its correlation with the pressure pulsations by using large eddy simulation (LES) method of the RCP. The vorticity distribution and the shedding vortex from the blade trailing edge are depicted in detail. Furthermore, the internal correlations between the flow unsteadiness and pressure pulsation are illustrated in some special regions of the RCP. Evidently, some main excitation components in the pressure spectra are excited by the shedding vortex. Besides, components at blade passing frequency (fBPF) are closely associated with rotor–stator interaction between the wake flow from the impeller outlet and unsteadiness vortexes shedding from the diffuser blade trailing edge. It is thought to be that the pressure pulsations of the RCP are closely associated with the corresponding vorticity distribution and the unsteady vortex shedding effect.


2020 ◽  
pp. 312-312
Author(s):  
Yuanyuan Zhao ◽  
Xiuli Wang ◽  
Rongsheng Zhu

Nuclear reactor coolant pump as one of the most critical equipment is the only one rotating equipment in first loop system of nuclear power plant. Due to the asymmetric structure of the pump body, especially the existence of outlet segment lead to a certain of radial force, the magnitude of radial force directly affects the work stability of the reactor coolant pump. The nuclear reactor coolant pump could stability work under those transient complex conditions is an important index of its performance. To study the cavitation characteristics and radial force of reactor coolant pump on transient cavitation, a prototype pump and those exhibiting different gravity center offsets are analyzed numerically with CFD software ANSYS CFX by employing RNG k-? model and two-fluid two-phase flow model. Through the experiment-combined simulation, the variations of cavitation characteristics and radial force of the reactor coolant pump under different eccentricities are characterized. As revealed from the results, the flow characteristics of the internal flow field of the nuclear main pump change after the axis is offset by different distance. The influence of eccentricity on the cavitation of the nuclear main pump is mainly manifested at the impeller inlet from cavitation inception to severe cavitation. When the eccentricity is 5mm, the cavitation performance is improved. The effect of eccentricity on the radial force of impeller is reflected in the variation of force direction. Compared with other plans, the radial force is superior in transient cavitation under the eccentricity of 5mm.


Sign in / Sign up

Export Citation Format

Share Document