Experimental Study of Aerosol Behavior During Pool Scrubbing: Part 2 — Decontamination of Aerosol Particle in Two Phase Flow

Author(s):  
Wataru Kikuchi ◽  
Kota Fujiwara ◽  
Yuki Nakamura ◽  
Shimpei Saito ◽  
Tomohisa Yuasa ◽  
...  

In order to decrease the leakage and diffusion of Fission Products (FPs) in a severe accident (SA) of nuclear power plants, BWR have a suppression chamber filled with water to decontaminate the polluted air from the reactor vessel when emergency ventilation is done. It’s called pool scrubbing having a function of decontamination effect that transfer particles from gas to liquid phase by blowing gas containing FP into water. decontamination factor (DF) which is an index of decontamination performance evaluation of pool scrubbing is predicted and calculated by using a flow model in the existing analysis model such as MELCOR code. Evaluation of the DF by pool scrubbing is important in analyzing SA progress of nuclear power plants. For this reason, validation of flow model and decontamination model is important. It is necessary to validate whether the analysis result of each model matches the actual phenomenon. Despite of these needs, generic experimental data on gas-liquid two phase flow including aerosol is insufficient in confirming the validity of existing model. Therefore, the aim of this study is to investigate aerosol behavior in air jet and its relation to bubbly flow structure during pool scrubbing. This is to obtain the flow structure when air - aerosol released to the pool part and are obtained. Transition behavior of particles from the gas phase into the liquid phase was observed by high-speed camera. In addition, the effect of aerosol on void fraction in the pool was measured by wire mesh sensor from the nozzle exit to the water surface ware also observed. Ejecting air-aerosol from the nozzle to the pool part at various flow rates, visualization of bubble diameter, bubble aspect ratio, void fraction and the gas phase velocity were done by using image processing and a wire-mesh sensor. From these results, we compared the parameters by the presence or absence of aerosol. DF is also compared with the model used in the MELCOR code.

Author(s):  
M. J. Pettigrew ◽  
B. Besner ◽  
N. W. Mureithi ◽  
T. Lafrance ◽  
J. M. Patrick

Flow-induced vibration in two-phase flows requires the knowledge of flow regime and detailed flow characteristics. This paper outlines the development of fiber-optic probes to measure void fraction, local flow velocity and characteristic size (i.e., bubble diameter) of the two-phase mixture. The principle of operation of such probes is based on the difference in index of refraction between the liquid phase and the gas phase when in contact with a fiber-optic probe supplied with a laser light. The reflected signal levels for the gas phase and the liquid phase are very different thus providing a reliable measure of void fraction. The paper describes the development of fiber-optic probes for measurements of internal two-phase flow in pipes and of external flow across a tube bundle. The use of double probes allows the measurements of local flow velocity and bubble size. Some detail measurements of flow in the gap between tubes in cross flow are presented. The fabrication of the very small and fragile probes required much development effort. The paper describes the difficulties and the solutions to assure good quality probes. Some data processing and data interpretation issues are also discussed.


2016 ◽  
Vol 40 (3) ◽  
pp. 746-761 ◽  
Author(s):  
Weiling Liu ◽  
Chao Tan ◽  
Feng Dong

Two-phase flow widely exists in many industries. Understanding local characteristics of two-phase flow under different flow conditions in piping systems is important to design and optimize the industrial process for higher productivity and lower cost. Air–water two-phase flow experiments were conducted with a 16×16 conductivity wire-mesh sensor (WMS) in a horizontal pipe of a multiphase flow facility. The cross-sectional void fraction time series was analysed by the probability density function (PDF), which described the void fraction fluctuation at different flow conditions. The changes and causes of PDFs during a flow regime transition were analysed. The local structure and flow behaviour were characterized by the local flow spectrum energy analysis and the local void fraction distribution (horizontal, vertical and radial direction) analysis. Finally, three-dimensional transient flow fluctuation energy evolution and characteristic scale distribution based on wavelet analysis of air–water two-phase flow were presented, which revealed the structural features of each phase in two-phase flow.


Author(s):  
Miki Saito ◽  
Taizo Kanai ◽  
Satoshi Nishimura ◽  
Yoshihisa Nishi

Abstract Understanding the mechanism of fission product (FP) removal by pool scrubbing is essential for improving the prediction accuracy of FP emissions concerning severe accident (SA) in a nuclear power plant. Since FP migrates from a gas-phase to a liquid-phase via a gas-liquid interface, the FP removal efficiency by pool scrubbing is largely affected by the flow regime of gas-liquid two-phase flow. In order to gain a deeper understanding of the influence of gas properties on flow regimes, experiments were performed by injecting helium (He) and nitrogen (N2) gas mixtures of several volumetric ratios through a pool of stagnant water. The result suggests clear effects of gas compositions on gas-liquid two-phase flow, where both void and holdup fractions were found to increase with N2 fraction in the supplied gas. The results were compared with previous studies, and a detailed analysis of bubble characteristics for different compositions of gases was performed using a wire-mesh sensor (WMS). This paper also illustrates further research aspects needed to discuss the effect of its results on FP removal efficiency in a SA, and to acquire comprehensive physics behind such gas property influences on two-phase flow.


Author(s):  
Casey Loughrin

Heater drain systems in fossil and nuclear power plants have proven to be among the most complex systems to design due to the occurrence of two–phase flow phenomena. The overall performance of heater drain systems directly relates to proper sizing and design of the piping and control valves. Proper sizing is highly dependent upon accurate and conservative calculation of two-phase flow pressure losses. This paper outlines the various options of solution methods available to the engineer and details one possible method which is simple, yet adequate, and based on the homogeneous equilibrium model (HEM) for two phase flow for calculation of heater drain system performance. General comparisons are made to the more complex multi-fluid models, flow regime considerations, and non-equilibrium models.


Author(s):  
Étienne Lessard ◽  
Jun Yang

In support of a header/feeder phenomena study, an adiabatic, near-atmospheric, air-water flow loop was commissioned simulating a single feeder of a Pressurized Heavy Water Reactor’s primary heat transport system under a postulated Loss of Coolant Accident scenario. An extensive database in representative two-phase flow conditions was collected, 750 tests in total, in order to create a two-phase flow map to be used in the more complex geometries such as header/feeder systems. The flow loop consists of two vertical test sections, for upwards and downwards flow, and one horizontal test section, each with an inner diameter of 32 mm and at least 120 diameters in length. Superficial velocities extended up to 6 m/s for the water and 10 m/s for the air. Void fraction was measured by means of quick-closing valves and a pair of wire-mesh sensors (WMS) in each test section. Two-phase repeatability tests showed that the liquid and gas superficial velocities varied by 1.1% and 0.6% at reference conditions of 2.0 and 2.8 m/s, respectively. The corresponding void fraction measurements varied for the quick-closing valves by at most 6.8%, which indicates a low sensitivity to the closure time of the valves and an appropriate axial distance between them, and 2.3% for the WMS. For both measurement techniques, the largest variations occurred in the vertical downwards test section. For the formal two-phase tests, over 600 distinct flow conditions were performed. The results showed that the two measurement techniques agreed within 5% at high void fractions and low liquid flow rates in vertical flow. For all other cases corresponding to the transitional or dispersed bubbly flow regime, the WMS over-estimated the void fraction by a consistent bias. An empirical correction is proposed, with a root-mean-square error of 6.6% across all tests. The void fraction map resulting from this database provides validation for the WMS measurements, a quantitative assessment of its uncertainty and range of applicability, and will be used as a reference in future tests under similar scale and flow conditions.


2020 ◽  
Vol 2020 (0) ◽  
pp. S05309
Author(s):  
Masaaki MUTO ◽  
Takuya WAKIYAMA ◽  
Hiroaki TSUBONE ◽  
Hideharu TAKAHASH ◽  
Hiroshige KIKURA

Author(s):  
Xianbing Chen ◽  
Puzhen Gao ◽  
Qiang Wang ◽  
Yinxing Zhang ◽  
Jiawei Liu

Natural circulation has been widely used in some evolutionary and innovative nuclear power plants. Natural circulation systems are susceptible to flow instabilities which are undesirable in the nuclear power devices. An experimentally investigation of two phase flow instability in up-flow boing channel under natural circulation is presented in this paper. Flow instability with and without flow reversal have been found. A pulse signal of water temperature at the inlet of the test section can be detected when the channel suffers from flow reversal. Single phase and two phase flow alternate in the channel regardless of the occurrence of flow reversal. Periodic oscillations with multiple high-order harmonic waves are confirmed by applying Fast Fourier Transform to the time traces of flow rates. Period of flow instability which is the reciprocal of the frequency with the largest amplitude in the amplitude-frequency plane are obtained. Period of flow oscillation presents a nonlinear change with the increase of mass flux. Period of flow instability increases rapidly with the increase of mass flux and decreases slowly when it reaches the maximum value.


Author(s):  
J.-H. Jeong ◽  
M. Kim ◽  
P. Hughes

Fluid-structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Therefore, fluid-structure interaction problems are too complex to solve analytically and so they have to be analysed by means of experiments or numerical simulation. This paper provides an overview of numerical methods for fluid-structure interaction evaluation in an draft IAEA technical guideline: large eddy simulation (LES), direct numerical simulation (DNS), Lattice-Boltzmann method (LBM), finite element method (FEM) and computational fluid dynamics (CFD) method. In addition to providing general applications of numerical methods for fluid-structure interaction evaluation, the paper also describes some cases applied for problems associated with single-phase flow and two-phase flow in nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document