Outline of Guideline for Seismic Response Analysis Method Using 3D Finite Element Model of Reactor Building

2021 ◽  
Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Tadahiko Shiomi ◽  
Manabu Kawata ◽  
Yinsheng Li

Abstract In the seismic safety assessment and design of building structures in nuclear facilities, lumped mass models are conventionally used. However, they cannot possess the required high-accuracy evaluation of nuclear facilities, such as the local response at the equipment location in a reactor building. From this point of view, a seismic response analysis method using a three-dimensional finite element (3D FE) model is indispensable. Furthermore, because analysis results obtained using 3D FE models vary to a large degree depending on the experience and knowledge of analysts, the quality of analysis results should be ensured by developing a standard analysis method. In the Japan Atomic Energy Agency, we have developed a guideline for seismic response analysis methods that adopt 3D FE models of reactor buildings, and we plan to publish it as JAEA report. The guideline consists of a main body, commentary, and several appendixes; it also includes procedures, recommendations, points of attention, and a technical basis for conducting seismic response analysis using 3D FE models of reactor buildings. In this paper, the outline of the guideline and analysis examples based on the guideline are presented.

2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


2013 ◽  
Vol 368-370 ◽  
pp. 1743-1746
Author(s):  
Li Jian Zhou ◽  
Yuan Gang Fan ◽  
Bin Gao ◽  
Xiang Ying Wang

Use Adina finite element software, established the finite element model of the the volume 10000m3LNG storage tank, against the concrete outer tank of full containment type LNG storage tank vertical seismic action seismic response analysis. Take acceleration seismic input method, select the four categories venue seismic waves, LNG storage tank stress analysis of vertical seismic action, come in different earthquake LNG storage tank outer tank equivalent stress, hoop stress and axial stress distribution.


Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Norihiro Nakajima

Research and development of three-dimensional vibration simulation technologies for nuclear facilities is one mission of the Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (JAEA). A seismic intensity of upper 5 was observed in the area of High-Temperature Engineering Test Reactor (HTTR) at the Oarai Research and Development Center of JAEA during the 2011 Tohoku earthquake. In this paper, we report a seismic response analysis of this earthquake using three-dimensional models of the HTTR building. We performed a parametric study by using uncertainty parameters. Furthermore, we examined the variation in the response result for the uncertainty parameters to create a valid 3D finite element model.


Sign in / Sign up

Export Citation Format

Share Document