Geometry of Plate Fins for Maximizing Heat Transfer

Author(s):  
Timo Karvinen ◽  
Reijo Karvinen

A method is presented for finding plate fin geometries for maximizing dissipated heat flux. The method is based on approximate analytical solutions of conjugated heat transfer which are utilized in optimization. As a result non-dimensional variables have been found that contain thermal and geometrical properties of the fin and the flow. These variables have a fixed value at the optimal point. The values are given for rectangular, convex parabolic, triangular, and concave parabolic fin shapes for natural and forced convection including laminar and turbulent boundary layers. An essential fact is that there is no need to evaluate convection heat transfer coefficients because they are already included in these variables. Easy-to-use design rules are presented for finding the geometry of fixed volume fins that gives the maximum heat transfer.

2012 ◽  
Vol 134 (8) ◽  
Author(s):  
R. Karvinen ◽  
T. Karvinen

A method and practical results are presented for finding the geometries of fixed volume plate fins for maximizing dissipated heat flux. The heat transfer theory used in optimization is based on approximate analytical solutions of conjugated heat transfer, which couple conduction in the fin and convection from the fluid. Nondimensional variables have been found that contain thermal and geometrical properties of the fins and the flow, and these variables have a fixed value at the optimum point. The values are given for rectangular, convex parabolic, triangular, and concave parabolic fin shapes for natural and forced convection including laminar and turbulent boundary layers. An essential conclusion is that it is not necessary to evaluate the convection heat transfer coefficients because convection is already included in these variables when the flow type is specified. Easy-to-use design rules are presented for finding the geometries of fixed volume fins that give the maximum heat transfer. A comparison between the heat transfer capacities of different fins is also discussed.


1970 ◽  
Vol 92 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Charles D. Jones ◽  
Lester F. Smith

Experimental average heat-transfer coefficients for free-convection cooling of arrays of isothermal fins on horizontal surfaces over a wider range of spacings than previously available are reported. A simplified correlation is presented and a previously available correlation is questioned. An optimum arrangement for maximum heat transfer and a preliminary design method are suggested, including weight considerations.


1970 ◽  
Vol 185 (1) ◽  
pp. 203-218 ◽  
Author(s):  
W. J. Seale ◽  
D. H. C. Taylor

Heat transfer coefficients have been measured on the gas side of pistons and liners, the water side of liners, and the oil side of pistons. A significant radial variation in heat transfer across the piston crown has been found. The position of the maximum heat transfer coefficient appears to be coincident with the maximum air concentration, or the position the tips of the fuel sprays have reached at the time of ignition, and the radial variation of heat transfer is possibly related to the amount of fuel burnt at each radius. For four-stroke engines, equations are presented to describe this variation. Heat transfer coefficients at the exposed section of the liner have been found to be similar to the values at the outer edge of the piston. Heat transfer between piston undercrown and cooling oil has been measured for various types of cooling arrangement and, for jet cooling, an expression has been suggested for the heat transfer coefficient. Equations have also been derived to enable coefficients to be predicted for heat transfer from liner to cooling water.


2012 ◽  
Vol 33 (3) ◽  
pp. 117-125
Author(s):  
Ewa Pelińska-Olko

Abstract During heat transport through the walls of a hollow sphere, the heat stream can achieve extreme values. The same processes occur in regular polyhedrons. We can calculate the maximum heat transfer rate, the so-called critical heat transfer rate. We must assume here identical conditions of heat exchange on all internal and external walls of a regular polyhedron. The transfer rate of heat penetrating through the regular polyhedron with different heat transfer coefficients on the walls is called the heat transfer rate with asymmetric boundary conditions. We show that the heat transfer rate in this case will grow up if we replace those coefficients with their average values.


2021 ◽  
Vol 11 (14) ◽  
pp. 6511
Author(s):  
Alessandro Quintino ◽  
Marta Cianfrini ◽  
Ivano Petracci ◽  
Vincenzo Andrea Spena ◽  
Massimo Corcione

Buoyancy-induced convection from a pair of staggered heated vertical plates suspended in free air is studied numerically with the main scope to investigate the basic heat and momentum transfer features and to determine in what measure any independent variable affects the thermal performance of each plate and both plates. A computational code based on the SIMPLE-C algorithm for pressure-velocity coupling is used to solve the system of the governing conservation equations of mass, momentum and energy. Numerical simulations are carried out for different values of the Rayleigh number based on the plate length, as well as of the horizontal separation distance between the plates and their vertical alignment, which are both normalized by the plate length. It is observed that an optimal separation distance between the plates for the maximum heat transfer rate related to the Rayleigh number and the vertical alignment of the plates does exist. Based on the results obtained, suitable dimensionless heat transfer correlations are developed for each plate and for the entire system.


1980 ◽  
Vol 102 (2) ◽  
pp. 215-220 ◽  
Author(s):  
E. M. Sparrow ◽  
C. Prakash

An analysis has been performed to determine whether, in natural convection, a staggered array of discrete vertical plates yields enhanced heat transfer compared with an array of continuous parallel vertical plates having the same surface area. The heat transfer results were obtained by numerically solving the equations of mass, momentum, and energy for the two types of configurations. It was found that the use of discrete plates gives rise to heat transfer enhancement when the parameter (Dh/H)Ra > ∼2 × 103 (Dh = hydraulic diameter of flow passage, H = overall system height). The extent of the enhancement is increased by use of numerous shorter plates, by larger transverse interplate spacing, and by relatively short system heights. For the parameter ranges investigated, the maximum heat transfer enhancement, relative to the parallel plate case, was a factor of two. The general degree of enhancement compares favorably with that which has been obtained in forced convection systems.


1959 ◽  
Vol 81 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Samuel Globe ◽  
David Dropkin

This paper presents results of an experimental investigation of convective heat transfer in liquids placed between two horizontal plates and heated from below. The liquids used were water, silicone oils of 1.5, 50, and 1000 centistoke kinematic viscosities, and mercury. The experiments covered a range of Rayleigh numbers between 1.51(10)5 and 6.76(10)8. and Prandtl numbers between 0.02 and 8750. Tests were made in cylindrical containers having copper tops and bottoms and insulating walls. For water and silicone oils the container was 5 in. in diam and 2 in. high. For mercury, two containers were used, both 5.28 in. in diameter, but one 1.39 in. high and another 2.62 in. high. In all cases the bottom plates were heated by electric heaters. The top plates were air-cooled for the water and silicone-oil experiments and water-cooled for the mercury tests. To prevent amalgamation, the copper plates of the mercury container were chromium plated. Surface temperatures were measured by thermocouples embedded in the plates. The test results indicate that the heat-transfer coefficients for all liquids investigated may be determined from the relationship Nu=0.069Ra13Pr0.074 In this equation the Nusselt and Rayleigh numbers are based on the distance between the copper plates. The results of this experiment are in reasonable agreement with the data reported by others who used larger containers and different fluids.


Sign in / Sign up

Export Citation Format

Share Document