Measurement of Heat Transfer and Pressure Drop During Condensation of Carbon Dioxide in Microscale Geometries

Author(s):  
Brian M. Fronk ◽  
Srinivas Garimella

Heat transfer coefficients and pressure drops during condensation of carbon dioxide (CO2) are measured in small quality increments in microchannels of 100 < Dh < 200 μm. Channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography, and sealed by diffusion bonding. The test section is cooled by chilled water circulating at a high flow rate to ensure that the thermal resistance on the condensation heat transfer side dominates. A conjugate heat transfer analysis in conjunction with local pressure drop profiles allows driving temperature differences, heat transfer rates, and condensation heat transfer coefficients to be determined accurately. Heat transfer coefficients are measured for G = 600 kg m−2 s−1 for 0 < x < 1 and multiple saturation temperatures. Preliminary results for a 300 × 100 μm (15 channels) test section are presented. These data are used to evaluate the applicability of correlations developed for larger hydraulic diameters and different fluids for predicting condensation heat transfer and pressure drop of CO2.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Akhil Agarwal ◽  
Srinivas Garimella

Condensation pressure drops and heat transfer coefficients for refrigerant R134a flowing through rectangular microchannels with hydraulic diameters ranging from 100 μm to 200 μm are measured in small quality increments. The channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography and sealed by diffusion bonding. Subcooled liquid is electrically heated to the desired quality, followed by condensation in the test section. Downstream of the test section, another electric heater is used to heat the refrigerant to a superheated state. Energy balances on the preheaters and postheaters establish the refrigerant inlet and outlet states at the test section. Water at a high flow rate serves as the test-section coolant to ensure that the condensation side presents the governing thermal resistance. Heat transfer coefficients are measured for mass fluxes ranging from 200 kg/m2 s to 800 kg/m2 s for 0< quality <1 at several different saturation temperatures. Conjugate heat transfer analyses are conducted in conjunction with local pressure drop profiles to obtain accurate driving temperature differences and heat transfer coefficients. The effects of quality, mass flux, and saturation temperature on condensation pressure drops and heat transfer coefficients are illustrated through these experiments.


Author(s):  
Akhil Agarwal ◽  
Srinivas Garimella

Condensation pressure drops and heat transfer coefficients are measured in small quality increments in channels with 100 &lt; Dh &lt; 200 microns. The channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography, and sealed by diffusion bonding. Subcooled liquid is electrically heated to the desired quality, followed by condensation in the test section. Downstream of the test section, another electric heater is used to heat the refrigerant to a superheated state. Energy balances on the pre- and post heaters establish the refrigerant inlet and outlet states at the test section. Water at a high flow rate serves as the test section coolant to ensure that the condensation side presents the governing thermal resistance. Heat transfer coefficients are measured for 200 &lt; G &lt; 800 kg/m2-s for 0 &lt; x &lt; 1 at several different saturation temperatures. Conjugate heat transfer analyses are conducted in conjunction with local pressure drop profiles to obtain accurate driving temperature differences and heat transfer coefficients. The effects of quality, mass flux, and saturation temperature on condensation pressure drops and heat transfer coefficients are illustrated through these experiments.


Author(s):  
Lindsey V. Randle ◽  
Brian M. Fronk

Abstract In this study, we use infrared thermography to calculate local heat transfer coefficients of top and bottom heated flows of near-critical carbon dioxide in an array of parallel microchannels. These data are used to evaluate the relative importance of buoyancy for different flow arrangements. A Joule heated thin wall made of Inconel 718 applies a uniform heat flux either above or below the horizontal flow. A Torlon PAI test section consists of three parallel microchannels with a hydraulic diameter of 923 μm. The reduced inlet temperature (TR = 1.006) and reduced pressure (PR = 1.03) are held constant. For each heater orientation, the mass flux (520 kgm−2s−2 ≤ G ≤ 800 kgm−2s−2) and heat flux (4.7 Wcm−2 ≤ q″ ≤ 11.1 Wcm−2) are varied. A 2D resistance network analysis method calculates the bulk temperatures and heat transfer coefficients. In this analysis, we divide the test section into approximately 250 segments along the stream-wise direction. We then calculate the bulk temperatures using the enthalpy from the upstream segment, the heat flux in a segment, and the pressure. To isolate the effect of buoyancy, we screen the data to omit conditions where flow acceleration may be important or where relaminarization may occur. In the developed region of the channel, there was a 10 to 15 percent reduction of the local heat transfer coefficients for the upward heating mode compared to downward heating with the same mass and heat fluxes. Thus buoyancy effects should be considered when developing correlations for these types of flow.


2010 ◽  
Vol 18 (02) ◽  
pp. 85-100 ◽  
Author(s):  
C. Y. PARK ◽  
P. S. HRNJAK

This paper presents a review of differences and similarities of in-tube heat transfer and pressure drop between ammonia (NH3) and carbon dioxide (CO2) from the perspective of the design of heat exchangers for NH3 two-stage and CO2/NH3 cascade refrigeration systems. The focus is on differences in thermophysical properties and thus different characteristics of heat transfer and pressure drop. A brief summary of published literatures about CO2/NH3 cascade refrigeration systems is provided and literature review of available correlations and developed correlations are presented for flow boiling and condensation heat transfer and pressure drop. Because of large deviation of calculated values with exiting correlations from measured results, a new correlation to predict flow condensation heat transfer coefficients was developed based on experimental results for CO2 at -15°C. From comparison of measured and predicted values, it is shown that some correlations, previously published in open literature, can be used to calculate flow boiling heat transfer coefficients for NH3 at -20°C, if a flow pattern can be appropriately determined for a flow condition. Also, it is presented that existing correlations can predict well the heat transfer coefficients for CO2 flow boiling at -15 and -30°C. It is shown that some correlations can predict pressure drop relatively well for NH3 and CO2 two-phase flow. The NH3 and CO2 flow evaporation heat transfer and pressure drop characteristics at -40°C are compared with predicted values.


2008 ◽  
Author(s):  
Pradeep A. Patil ◽  
S. N. Sapali

An experimental test facility is designed and built to calculate condensation heat transfer coefficients and pressure drops for HFC-134a, R-404A, R-407C, R-507A in a smooth and micro-fin tube. The main objective of the experimentation is to investigate the enhancement in condensation heat transfer coefficient and increase in pressure drop using micro-fin tube for different condensing temperatures and further to develop an empirical correlation for heat transfer coefficient and pressure drop, which takes into account the micro-fin tube geometry, variation of condensing temperature and temperature difference (difference between condensing temperature and average temperature of cooling medium). The experimental setup has a facility to vary the different operating parameters such as condensing temperature, cooling water temperature, flow rate of refrigerant and cooling water etc and study their effect on heat transfer coefficients and pressure drops. The hermetically sealed reciprocating compressor is used in the system, thus the effect of lubricating oil on the heat transfer coefficient is taken in to account. This paper reports the detailed description of design and development of the test apparatus, control devices, instrumentation, and the experimental procedure. It also covers the comparative study of experimental apparatus with the existing one from the available literature survey. The condensation and pressure drop of HFC-134a in a smooth tube are measured and obtained the values of condensation heat transfer coefficients for different mass flux and condensing temperatures using modified Wilson plot technique with correlation coefficient above 0.9. The condensation heat transfer coefficient and pressure drop increases with increasing mass flux and decreases with increasing condensing temperature. The results are compared with existing available correlations for validation of test facility. The experimental data points have good association with available correlations except Cavallini-Zecchin Correlation.


2017 ◽  
Vol 25 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Pham-Quang Vu ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh ◽  
Honggi Cho

The condensation heat transfer coefficients and pressure drops of R410A and R22 flowing inside a horizontal aluminum multiport mini-channel tube having 18 channels are investigated. Experimental data are presented for the range of vapor quality from 0.1 to 0.9, mass flux from 50 to 500[Formula: see text]kg/m2s, heat flux from 3 to 15[Formula: see text]kW/m2 and the saturation temperature at 48[Formula: see text]C. The pressure drop across the test section was directly measured by a differential pressure transducer. At a small scale, the noncircular cross-sections can enhance the effect of the surface tension. The average heat transfer coefficient increased with the increase of vapor quality, mass flux and heat flux. Under the same test conditions, the heat transfer coefficients of R22 are higher than those for R410A, the pressure drops for R410A are 7–19% lower than those of R22. The lower pressure drop of R410A has an important advantage as an alternative working fluid for R22 in air-conditioning and heat pump systems.


1960 ◽  
Vol 82 (3) ◽  
pp. 189-196 ◽  
Author(s):  
M. Altman ◽  
R. H. Norris ◽  
F. W. Staub

A test facility is described that has been constructed to investigate local heat transfer and pressure drop for evaporating or condensing refrigerants. The empirical method of B. Pierre [1] for correlating the average heat-transfer coefficients of refrigerants evaporating in horizontal tubes is presented in conjunction with the data of several authors [3–6]. Data on local heat-transfer coefficients and pressure drop are presented for Refrigerant-22 evaporating in two 4-ft-long, 0.343-in-ID straight horizontal tubes, and are correlated by a refinement of the curve proposed in [1]. The procedure of Martinelli-Nelson [9] correlated the data for local pressure drop within 15 per cent.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mete Budakli ◽  
Thamer Khalif Salem ◽  
Mehmet Arik ◽  
Barca Donmez ◽  
Yusuf Menceloglu

Abstract Condensation heat transfer coefficients (HTCs) are rather low compared to thin film evaporation. Therefore, it can be a limiting factor for designing heat transfer equipment. In this work, heat transfer characteristics of water vapor condensation phenomena were experimentally studied on a vertically aligned smooth copper substrate for a range of pressures and temperatures for two different liquid wettability conditions. The heat transfer performance is dominated by the phase change process at the solid–vapor interface along with the liquid formation mechanism. Compared to heat transfer results measured at an untreated copper surface, heat transport is augmented with a thin layer of perfluoro-silane coating over the same substrate. In this work, the effect of saturation pressure on the condensation process at both surfaces has been investigated by analyzing heat transfer coefficients. The results obtained experimentally show an increase in contact angle (CA) with the surface coating. A heat transfer augmentation of about 26% over uncoated surfaces was obtained and surfaces did not show any degradation after 40 h of operation. Finally, current results are compared with heat transfer values reported in open literature.


Author(s):  
Guohua Kuang ◽  
Michael Ohadi ◽  
Yuan Zhao

Carbon Dioxide (CO2) is being investigated as an alternative refrigerant for vapor compression systems. In addition to its environmental benefits, Carbon Dioxide offers certain attractive thermal characteristics such as small surface tension, small liquid viscosity and large refrigerant capacity. Furthermore, combination with microchannels provides CO2 heat exchangers that have low weight, high compaction and high heat transfer coefficient. But certain oil (e.g., lubricate oil for compressor) will be carried into the vapor compression system, which usually has negative effect on heat transfer and pressure drop. The objective of the present paper is to study the effect of oil addition on heat transfer coefficient and pressure drop in supercritical gas cooling process in microchannels. Experiments addressed effect of three different types of oil (two immiscible and one miscible) at various oil concentrations ranging from 0% (no oil) to 5% by weight. As expected, oil addition has significant negative effect on heat transfer coefficients. At higher oil concentrations the heat transfer coefficients are substantially lower and the pressure drops are higher. As far the type of oil is concerned, the immiscible oil demonstrated more negative influence on the heat transfer and pressure drops than the miscible oil.


Author(s):  
Srinivas Garimella ◽  
Akhil Agarwal ◽  
Todd M. Bandhauer

A set of techniques for the measurement of condensation heat transfer coefficients for circular and noncircular channels with 5 mm &gt; Dh &gt; 100 μm is presented. For the larger range of Dh (5 &gt; Dh &gt; 0.4 mm), single tubes or multiple parallel extruded channels are used as test sections. The test section is cooled using water at a high flow rate to ensure that the condensation side presents the governing thermal resistance. Heat exchange with a secondary cooling water stream at a much lower flow rate is used to obtain a large temperature difference, which is used to measure the condensation duty. Condensation heat transfer coefficients are measured in small quality increments for 0 &lt; x &lt; 1 over the mass flux range 150 &lt; G &lt; 750 kg/m2-s with uncertainties typically less than 20%. For 200 &gt; Dh &gt; 100 μm, channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography, and sealed by diffusion bonding. Subcooled liquid is electrically heated to the desired quality, followed by condensation in the test section. Downstream of the test section, another electric heater is used to heat the refrigerant to a superheated state. Energy balances on the pre-and post-heaters establish the refrigerant inlet and outlet states at the test section. Water at a high flow rate serves as the test section coolant to ensure that the condensation side presents the governing thermal resistance. Heat transfer coefficients are measured for 200 &lt; G &lt; 800 kg/m2-s for 0 &lt; x &lt; 1. It is demonstrated that uncertainties as low as 6% can be achieved in the measurement of condensation heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document