Effect of Polymer Coating on Vapor Condensation Heat Transfer

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mete Budakli ◽  
Thamer Khalif Salem ◽  
Mehmet Arik ◽  
Barca Donmez ◽  
Yusuf Menceloglu

Abstract Condensation heat transfer coefficients (HTCs) are rather low compared to thin film evaporation. Therefore, it can be a limiting factor for designing heat transfer equipment. In this work, heat transfer characteristics of water vapor condensation phenomena were experimentally studied on a vertically aligned smooth copper substrate for a range of pressures and temperatures for two different liquid wettability conditions. The heat transfer performance is dominated by the phase change process at the solid–vapor interface along with the liquid formation mechanism. Compared to heat transfer results measured at an untreated copper surface, heat transport is augmented with a thin layer of perfluoro-silane coating over the same substrate. In this work, the effect of saturation pressure on the condensation process at both surfaces has been investigated by analyzing heat transfer coefficients. The results obtained experimentally show an increase in contact angle (CA) with the surface coating. A heat transfer augmentation of about 26% over uncoated surfaces was obtained and surfaces did not show any degradation after 40 h of operation. Finally, current results are compared with heat transfer values reported in open literature.

Author(s):  
Ramana Saketh Vanga ◽  
Sunwoo Kim

Renewable energy systems operated by a thermal energy resource such as geothermal power plants and solar thermal power systems are demanding improvement in their condensation performance [Kutscher & Costenaro, 2009]. While their energy resources are naturally obtained at almost no cost, heat rejecting components become relatively expensive to maintain and operate. In this research, a heterogeneous condensing surface is proposed to enhance the condensation heat transfer coefficient in vapor-to-liquid heat exchangers. On its surface, parallel stripes with hydrophobic feature and ones without it alternate. The effect of the partially hydrophobic condensing surface on the dropwise condensation heat transfer of saturated steam on the flat plate copper surface is experimentally investigated. A vertical flat plat condenser is constructed to evaluate the performance of the heterogeneous condensing surface in comparison with a plain copper sample and a homogeneous hydrophobic-treated copper sample. Experimental results show that condensation heat transfer of steam on the homogeneous hydrophobic-treated sample is superior to that on the plain copper surface despite the fact that both the surfaces stably promote dropwise condensation. The heat transfer coefficients for the heterogeneous surface at lower subcooling temperatures, when its stripes situate horizontally, are as high as the heat transfer coefficients for the homogeneous hydrophobic-treated surface. The enhancement for the horizontal heterogeneous sample over the plain copper sample is approximately 100%. The heat transfer coefficient for the heterogeneous sample with its stripes being vertical at 4 K subcooling is 25% greater than that of the plain copper sample. Higher heat transfer coefficients are observed at lower subcooling temperatures for all the samples. The results and observations of this project suggest that the heterogeneous surface has the potential to enhance the heat transfer coefficients.


Author(s):  
Kohei Yamazaki ◽  
Hiroyasu Ohtake ◽  
Koji Hasegawa

The present study was intended to examine how the condensation heat transfer, especially the dropwise condensation, was affected by modifying the surface nature. In the present study, condensation heat transfer experiments for steam were performed by using mirror-finished copper surface and some very thin metal-film surfaces by using sputtering on mirror-finished copper block. That is, the effects on pattern of condensation heat transfer, i.e., dropwise or film-wise condensation, of metal-sputtered surfaces were examined experimentally and qualitatively. The present experimental results showed that the condensation on sputtered metal surfaces of Copper (Cu), Chromium (Cr) and Lead (Pb), became dropwise condensation. The heat transfer coefficients were ten times higher than the Nusselt equation. The condensation on sputtered metal surface of Titanium (Ti) became filmwise condensation. High contact angle was trended to be dropwise condensation on very thin metal-film surfaces by using sputtering.


Author(s):  
Brian M. Fronk ◽  
Srinivas Garimella

Heat transfer coefficients and pressure drops during condensation of carbon dioxide (CO2) are measured in small quality increments in microchannels of 100 < Dh < 200 μm. Channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography, and sealed by diffusion bonding. The test section is cooled by chilled water circulating at a high flow rate to ensure that the thermal resistance on the condensation heat transfer side dominates. A conjugate heat transfer analysis in conjunction with local pressure drop profiles allows driving temperature differences, heat transfer rates, and condensation heat transfer coefficients to be determined accurately. Heat transfer coefficients are measured for G = 600 kg m−2 s−1 for 0 < x < 1 and multiple saturation temperatures. Preliminary results for a 300 × 100 μm (15 channels) test section are presented. These data are used to evaluate the applicability of correlations developed for larger hydraulic diameters and different fluids for predicting condensation heat transfer and pressure drop of CO2.


Author(s):  
Zhen Zhang ◽  
Yoav Peles ◽  
Michael K. Jensen

To improve condensation heat transfer performance in a variety of systems, reduced channel sizes are used. However, few studies have been performed on complete heat exchangers. Hence, condensation heat transfer coefficients were studied experimentally in two ultracompact heat exchangers with a hydraulic diameter of 133 μm using steam as the working fluid. Effects of mass flux, average vapor quality, saturation pressure, and heat exchanger size were examined. The condensation heat transfer coefficients showed strong influence of mass flux and quality. However, the effects of saturation pressure and heat exchange size were not significant. Three conventional and three mini/microscale correlations were compared with the experimental data. The conventional and mini/microscale correlations developed for annular flow overpredict the data significantly. The Soliman correlation developed for mist flow showed the best agreement with the data.


Author(s):  
Tailian Chen

In this work, heat transfer coefficients during condensation of an environment-friendly refrigerant R-1233zd(e) on the outside surface of two cylindrical tubes are individually measured. The cooling water flows inside the tubes and provides cooling to the vapor refrigerant. One tube is a plain smooth tube (smooth both inside and outside) while the other tube is an enhanced tube, with the inside surface having 2D helical ridges and the outside surface having 3D extruded fins. The tests were conducted at the saturation temperature 36.1 °C, a typical temperature in chiller condensers. The results show the overall heat transfer coefficients of the enhanced tube are approximately 8.4 times higher as a result of the heat transfer enhancement on both sides. The condensation heat transfer degrades with an increase in the degree of subcooling, and the trend of degradation is the nearly the same for both the smooth and the enhanced tube, both is smaller than that in the Nusselt correlation. Compared with condensation on the smooth surface, the condensation heat transfer from the enhanced surface is enhanced approximately 10.8 times higher than that on the smooth surface. In addition to enlarged heat transfer area of the extruded fins, the enhancement in the condensation heat transfer is partly attributed to a better condensate draining mechanism of the 3D-structured fins where surface tension plays an important role. Further analysis reveals that heat transfer during the condensation process on the 3D low-fin surface follows the Nusselt correlation with a multiplier that accounts for the enhancement in heat transfer, which is desirably simple approach to modeling condensation heat transfer on the complex 3D enhanced surfaces. This work can lead to more insights into the physical mechanisms during the complex condensation process.


Author(s):  
Shulei Li ◽  
Rui Zhu ◽  
Gongnan Xie ◽  
Yiqiang Jiang ◽  
Weihua Cai

Abstract In order to explore tube-side heat transfer characteristics in the spiral wound heat exchange (SWHE) used in liquid natural gas (LNG) plants, the study on zeotropic hydrocarbon mixtures condensation heat transfer in a helical pipe is proposed. Firstly, based on two-fluid model and thermal phase change model, a numerical method coupling with empirical correlations is established to predict condensation heat transfer for zeotropic mixtures, in which the mixed effects are taken into account. Meanwhile, the rationality of the above methods is verified based on existing experimental results. Then, the effects of refrigerant components and operating parameters on flow patterns, heat transfer coefficients and heat and mass transfer resistance are discussed as the ranges of mass flux, saturation pressure and vapor quality are 200–800 kg/(m2·s), 2–4MPa and 0.15–0.90, respectively. It can be found that the predicted results coincide with the experimental ones, with deviations within ±15%. For different zeotropic hydrocarbon mixtures, as the vapor quality increases, the stratified flow, half-annular flow and annular flow appears in turn. The condensation heat transfer coefficients are always smaller than film heat transfer coefficients owing to the existence of heat and mass transfer resistance in vapor core. Besides, both film and condensation heat transfer coefficients increase with the increase of vapor quality and mass flux, while decrease with the rise in saturation pressure. Further, heat and mass transfer resistances increase as the vapor quality and saturation pressure increase and the mass flux decreases. In addition, compared to methane/ethane/propane/nitrogen (65/25/5/5, mole%) mixture, the averaged heat transfer performance for methane/ethane (90/10, mole%) mixture improves by 19.55%, whereas, the average heat and mass transfer resistance decreases by 53.51%. This study is helpful for understanding the zeotropic mixtures condensation in tubes and gives some suggestions for the choice of refrigerant components used in LNG SWHE, to design more effective SWHE.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


1993 ◽  
Vol 115 (4) ◽  
pp. 998-1003 ◽  
Author(s):  
P. F. Peterson ◽  
V. E. Schrock ◽  
T. Kageyama

In turbulent condensation with noncondensable gas, a thin noncondensable layer accumulates and generates a diffusional resistance to condensation and sensible heat transfer. By expressing the driving potential for mass transfer as a difference in saturation temperatures and using appropriate thermodynamic relationships, here an effective “condensation” thermal conductivity is derived. With this formulation, experimental results for vertical tubes and plates demonstrate that condensation obeys the heat and mass transfer analogy, when condensation and sensible heat transfer are considered simultaneously. The sum of the condensation and sensible heat transfer coefficients becomes infinite at small gas concentrations, and approaches the sensible heat transfer coefficient at large concentrations. The “condensation” thermal conductivity is easily applied to engineering analysis, and the theory further demonstrates that condensation on large vertical surfaces is independent of the surface height.


Sign in / Sign up

Export Citation Format

Share Document