Yield Inception of a Coated Substrate Indented by a Rigid Sphere

Author(s):  
Wenping Song ◽  
Longqiu Li ◽  
Andrey Ovcharenko ◽  
Ding Jia ◽  
Guangyu Zhang ◽  
...  

Yield inception of a coated substrate indented by a rigid sphere is analyzed using finite element analysis. The critical interference is studied as a function of film thickness and material properties of both the film and the substrate. The results show that critical interference, corresponding to yield inception of the coated substrate, is a strong function of the film thickness, the Young’s modulus, and the yield strength of both the film and the substrate.

2006 ◽  
Vol 326-328 ◽  
pp. 219-222 ◽  
Author(s):  
Dong Cheon Baek ◽  
Soon Bok Lee

As a reliable tool to measure the Young’s modulus, nanoindention technique has been used widely recently. In this paper, nanoindetation technique was overviewed with its advantage and limitation and a new method was proposed to determine material properties of film, i.e. both Young’s modulus E and Poisson’s ratio ν from load-displacement curve of shallow-depth indentation using ‘inverse method’.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2021 ◽  
Vol 21 (5) ◽  
pp. 2987-2991
Author(s):  
Geumtaek Kim ◽  
Daeil Kwon

Along with the reduction in semiconductor chip size and enhanced performance of electronic devices, high input/output density is a desired factor in the electronics industry. To satisfy the high input/output density, fan-out wafer-level packaging has attracted significant attention. While fan-out wafer-level packaging has several advantages, such as lower thickness and better thermal resistance, warpage is one of the major challenges of the fan-out wafer-level packaging process to be minimized. There have been many studies investigating the effects of material properties and package design on warpage using finite element analysis. Current warpage simulations using finite element analysis have been routinely conducted with deterministic input parameters, although the parameter values are uncertain from the manufacturing point of view. This assumption may lead to a gap between the simulation and the field results. This paper presents an uncertainty analysis of wafer warpage in fan-out wafer-level packaging by using finite element analysis. Coefficient of thermal expansion of silicon is considered as a parameter with uncertainty. The warpage and the von Mises stress are calculated and compared with and without uncertainty.


1999 ◽  
Vol 36 (04) ◽  
pp. 203-210
Author(s):  
Steven P. McGee ◽  
Armin Troesch ◽  
Nickolas Vlahopoulos

In 1994 the International Maritime Organization adopted the Code of Safety for High-Speed Craft (HSC Code). After two years of use, several shortfalls were found, one being the damage length predictor, which is based on traditional steel, mono-hulled vessels. Other damage predictors were developed based on historical data, but they do not account for variables such as aluminum or fiberglass construction, transverse members, indenter geometry variation, or for the case where the vessel comes to rest on the grounding object. This paper proposes a damage prediction model based on material properties, structural layout, grounding object geometry, and vessel speed. The model incorporates four grounding mechanisms: plate cutting, plate tearing, crushing of plate behind transverse members, and transverse member failure. The method is used to determine the resistance energy, compared to the kinetic energy, of the vessel, to determine an effective damage length. Finite-element analysis was used to model the failure of both aluminum and steel transverse members with significant differences in the results. It was found that the transverse members provided the majority of the resistance energy in one grounding mechanism and negligible resistance energy in another.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Chunlai Tian ◽  
Pengfei Duan

Composite has been widely used in various fields due to its advanced performance. To reveal the relation between the mechanical properties of the composite and that of each individual component, finite element analysis (FEA) has usually been adopted. In this study, in order to predict the mechanical properties of hard coating on a soft polymer, the response of this coating system during nanoindentation was modelled. Various models, such as a viscoelastic model and fitting model, were adopted to analyse the indentation response of this coating system. By varying the substrate properties (i.e., Young’s modulus, viscoelasticity, and Poisson’s ratio), Young’s modulus, energy loss, and the viscoelastic model of the coating system were analysed, and how the mechanical properties of the substrate will affect the indentation response of the coating system was discussed.


Sign in / Sign up

Export Citation Format

Share Document