Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control

1999 ◽  
Author(s):  
Soon-Hong Lee ◽  
Thomas J. Royston ◽  
Gary Friedman

Abstract Hysteretic behavior in piezoceramic transducers is investigated theoretically and experimentally. The applicability of the rate-independent generalized Maxwell resistive capacitor (MRC) hysteresis model is established. Methods for MRC and inverse MRC online model identification are developed by first establishing that the MRC and its inverse are the same particular cases of the classical Preisach hysteresis model. This enables use of the extensive mathematical framework that has been developed for Preisach models. A method of incorporating the MRC model in a feedforward control scheme for hysteresis compensation is also presented. Experimental studies on a 1-3 piezoceramic composite support the theoretical developments and their applicability to piezoceramics.

1998 ◽  
Vol 120 (4) ◽  
pp. 537-541 ◽  
Author(s):  
C.-G. Kang ◽  
R. Horowitz ◽  
G. Leitmann

There have been theoretical developments on the control of dynamic systems based on deterministically uncertain and singularly perturbed models in recent years. In this paper, a robust deterministic control scheme proposed originally by M. Corless et al. is modified, and is applied to the tracking control of robot manipulators. Simulation and experimental studies for a two degree of freedom, direct drive SCARA manipulator are conducted to evaluate the effectiveness of the control scheme.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 105
Author(s):  
Thinh Huynh ◽  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This paper proposes a new method to control the pose of a camera mounted on a two-axis gimbal system for visual servoing applications. In these applications, the camera should be stable while its line-of-sight points at a target located within the camera’s field of view. One of the most challenging aspects of these systems is the coupling in the gimbal kinematics as well as the imaging geometry. Such factors must be considered in the control system design process to achieve better control performances. The novelty of this study is that the couplings in both mechanism’s kinematics and imaging geometry are decoupled simultaneously by a new technique, so popular control methods can be easily implemented, and good tracking performances are obtained. The proposed control configuration includes a calculation of the gimbal’s desired motion taking into account the coupling influence, and a control law derived by the backstepping procedure. Simulation and experimental studies were conducted, and their results validate the efficiency of the proposed control system. Moreover, comparison studies are conducted between the proposed control scheme, the image-based pointing control, and the decoupled control. This proves the superiority of the proposed approach that requires fewer measurements and results in smoother transient responses.


1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^


1999 ◽  
Author(s):  
Dongwoo Song ◽  
C. James Li

Abstract This paper describes a micro-positioning system based on piezo actuators and a spring mechanism, and a hybrid hysteresis model integrating a neural network and Preisach model to identify the inverse dynamics of the micro-positioning system. To improve the workpiece form accuracy in diamond turning, feedforward control using the hybrid inverse model and feedback PID control were applied individually and in combination. The performance of these controllers are compared in actual cutting tests.


2019 ◽  
Vol 9 (4) ◽  
pp. 687 ◽  
Author(s):  
Bin Wang ◽  
Guang Huo ◽  
Yongfeng Sun ◽  
Shansuo Zheng

With the aim to model the seismic behavior of steel reinforced concrete (SRC) frame columns, in this research, hysteresis and skeleton curves were obtained based on the damage test results of SRC frame columns under low cyclic repeat loading and the hysteretic behavior of the frame columns was further analyzed. Then, the skeleton curve and hysteresis loops were further simplified. The simplified skeleton curve model was obtained through the corresponding feature points obtained by mechanical and regression analysis. The nonlinear combination seismic damage index, which was developed by the test results and can well reflect the effect of the loading path and the number of loading cycle of SRC frame columns, was used to establish the cyclic degradation index. The strength and stiffness degradation rule of the SRC frame columns was analyzed further by considering the effect of the accumulated damage caused by an earthquake. Finally, the hysteresis model of the SRC frame columns was established, and the specific hysteresis rules were given. The validity of the developed hysteresis model was verified by e comparison between the calculated results and the test results. The results showed that the model could describe the hysteresis characteristics of the SRC frame columns under cyclic loading and provide guidance for the elastoplastic time-history analysis of these structures.


Author(s):  
Chun-Chung Li ◽  
Yung Ting ◽  
Yi-Hung Liu ◽  
Yi-Da Lee ◽  
Chun-Wei Chiu

A 6DOF Stewart platform using piezoelectric actuators for nanoscale positioning objective is designed. A measurement method that can directly measure the pose (position and orientation) of the end-effector is developed so that task-space on-line control is practicable. The design of a sensor holder for sensor employment, a cuboid with referenced measure points, and the computation method for obtaining the end-effector parameters is introduced. A control scheme combining feedforward and feedback is proposed. The inverse model of a hysteresis model derived by using a dynamic Preisach method is used for the feedforward control. Hybrid control to maintain both the positioning and force output for nano-cutting and nano-assembly applications is designed for the feedback controller. The optimal gain of the feedback controller is searched by using relay feedback test method and genetic algorithm. In experiment, conditions with/without external load employed with feedforward, feedback, and feedforward with feedback control schemes respectively are carried out. Performance of each control scheme verifies the capability of achieving nanoscale precision. The combined feedforward and feedback control scheme is superior to the others for gaining better precision.


2006 ◽  
Vol 39 (1) ◽  
pp. 155-159
Author(s):  
Erik Etien ◽  
Damien Halbert ◽  
Gerard Champenois ◽  
Regis Ouvrard

1997 ◽  
Vol 119 (3) ◽  
pp. 447-454 ◽  
Author(s):  
A. V. Ephanov ◽  
Y. Hurmuzlu

This paper presents an approach to the implementation of sensory feedback in a robotic telemanipulation system. The system considered here consists of kinematically similar master-slave robotic manipulators. We propose a control scheme whereby the slave tracks the motion commanded by the human operator through the master mechanism. The scheme also accommodates, in a unified manner, different sources of sensory feedback. These include combined effects of the interaction with unknown environments and changes in structural properties of the slave manipulator due to additional unknown loads. The control algorithm is based on continuously sliding variable structure control, which is a nonlinear and highly robust control scheme. Due to the robustness of the scheme, the need for a priori information about the environment and the load is minimal. This information can be passed on to the system in the form of upper bounds of the interaction forces and additional loads. Experimental studies with a Pneumatic Haptic Interface (PHI) system were conducted to evaluate the performance of the proposed scheme. We used a virtual slave with percent 25 uncertainty to verify the robustness of the controller. We have shown that the proposed scheme can accurately estimate the environmental interaction torques and can robustly track the trajectories commanded by the human operator.


Sign in / Sign up

Export Citation Format

Share Document