A Modular Finite Element Parallel Fluid Applications Simulator

1999 ◽  
Author(s):  
K. L. Wong ◽  
A. J. Baker

Abstract With the rapid advances in high-performance computing technology in recent years, researchers at the University of Tennessee have initiated a collaborative project to address the theoretical, algorithmic, and numerical implementation issues of computational mechanics simulations. To meet the challenge, a Parallel Interoperable Computational Mechanics Simulator System (PICMSS) has been established. Such effort entails the development of a modular finite element platform capable of admitting diverse CFD formulations, as well as closure models for physics phenomena, as required/derived by the users operating on supercomputers and networks of PC clusters. Incompressible Navier Stokes Benchmark solutions via a velocity-vorticity formulation are proposed to examine the integrity and scalability of PICMSS.

2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


Author(s):  
Atta ur Rehman Khan ◽  
Abdul Nasir Khan

Mobile devices are gaining high popularity due to support for a wide range of applications. However, the mobile devices are resource constrained and many applications require high resources. To cater to this issue, the researchers envision usage of mobile cloud computing technology which offers high performance computing, execution of resource intensive applications, and energy efficiency. This chapter highlights importance of mobile devices, high performance applications, and the computing challenges of mobile devices. It also provides a brief introduction to mobile cloud computing technology, its architecture, types of mobile applications, computation offloading process, effective offloading challenges, and high performance computing application on mobile devises that are enabled by mobile cloud computing technology.


2014 ◽  
Author(s):  
Mehdi Gilaki ◽  
Ilya Avdeev

In this study, we have investigated feasibility of using commercial explicit finite element code LS-DYNA on massively parallel super-computing cluster for accurate modeling of structural impact on battery cells. Physical and numerical lateral impact tests have been conducted on cylindrical cells using a flat rigid drop cart in a custom-built drop test apparatus. The main component of cylindrical cell, jellyroll, is a layered spiral structure which consists of thin layers of electrodes and separator. Two numerical approaches were considered: (1) homogenized model of the cell and (2) heterogeneous (full) 3-D cell model. In the first approach, the jellyroll was considered as a homogeneous material with an effective stress-strain curve obtained through experiments. In the second model, individual layers of anode, cathode and separator were accounted for in the model, leading to extremely complex and computationally expensive finite element model. To overcome limitations of desktop computers, high-performance computing (HPC) techniques on a HPC cluster were needed in order to get the results of transient simulations in a reasonable solution time. We have compared two HPC methods used for this model is shared memory parallel processing (SMP) and massively parallel processing (MPP). Both the homogeneous and the heterogeneous models were considered for parallel simulations utilizing different number of computational nodes and cores and the performance of these models was compared. This work brings us one step closer to accurate modeling of structural impact on the entire battery pack that consists of thousands of cells.


Author(s):  
Makoto Tsubokura ◽  
Takuji Nakashima ◽  
Nobuyuki Oshima ◽  
Kozo Kitoh ◽  
Huilai Zhang ◽  
...  

The world’s largest class unsteady turbulence simulations of flow around vehicles were conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes method, for the assessment of vehicle aerodynamics.


Sign in / Sign up

Export Citation Format

Share Document