Structure and Mixing Properties of Unsteady Round Nonbuoyant Turbulent Jets and Puffs in Still Gases

2000 ◽  
Author(s):  
R. Sangras ◽  
G. M. Faeth

Abstract A theoretical and experimental study of the temporal development of unsteady round nonbuoyant turbulent jets (starting jets) and puffs (interrupted jets) is described, limited to sources in still and unstratified environments. The experiments involved dye-containing fresh water sources injected vertically downward into fresh water within a large windowed tank with injector passage length/diameter ratios of 50. Time-resolved video images of the flows were obtained using a CCD camera. Test conditions were as follows: jet exit diameters of 3.2–12.7 mm, jet exit Reynolds numbers of 1450–11700, volume of injected fluid for puffs up to 80 passage diameters long, and penetration lengths up to 100 source diameters. Near-source behavior varied significantly with source properties but the flows generally became turbulent near the jet exit with self-preserving behavior observed at distances greater than 20–30 source diameters from the source. Within the self-preserving region, both the normalized streamwise penetration distance and the normalized maximum flow radius varied as functions of time to the following powers, in agreement with estimates for self-preserving turbulent flows: 1/2 for starting nonbuoyant jets and 1/4 for nonbuoyant puffs.

2002 ◽  
Vol 124 (3) ◽  
pp. 460-469 ◽  
Author(s):  
R. Sangras ◽  
O. C. Kwon ◽  
G. M. Faeth

The self-preserving properties of round nonbuoyant turbulent starting jets, puffs, and interrupted jets were investigated both experimentally and theoretically for flows in still and unstratified environments. The experiments involved dye-containing fresh water sources injected into still fresh water within a large windowed tank. Time-resolved video images of the flows were obtained using a CCD camera. Experimental conditions were as follows: jet exit diameters of 3.2 and 6.4 mm, jet exit Reynolds numbers of 3000–12,000, jet passage lengths in excess of 50 injector passage diameters, volume of injected fluid for puffs and interrupted jets up to 191 source diameters, and streamwise penetration lengths up to 140 source diameters. Near-source behavior varied significantly with source properties but the flows generally became turbulent within 5 source diameters from the source and self-preserving behavior was generally observed at distances greater than 20–30 source diameters from the source. Within the self-preserving region, both the normalized streamwise penetration distance and the normalized maximum flow radius varied as functions of time in agreement with estimates for self-preserving turbulent flows to the following powers: 1/2 for starting nonbuoyant jets and 1/4 for nonbuoyant puffs and interrupted jets. Effects of injected fluid quantity for self-preserving puffs and interrupted jets could be handled by correlating the location of the virtual origin as a function of the volume of the injected fluid represented by the number of passage lengths of injected fluid. In particular, the virtual origin for puffs was independent of injected fluid volume for injected passage lengths less than 120 but became proportional to the injected fluid volume thereafter, defining a boundary between puff and interrupted-jet behavior.


2003 ◽  
Author(s):  
F. J. Diez ◽  
L. P. Bernal ◽  
G. M. Faeth

The self-preserving properties of round turbulent thermals, puffs, starting plumes and starting jets, in unstratified and uniform crossflow, were investigated experimentally. The experiments involved dye-containing fresh water (for nonbuoyant flows) and salt water (for buoyant flows) sources injected vertically downward into crossflowing fresh water within a water channel. Time-resolved video images of the flows were obtained using CCD cameras. Experimental conditions were as follows: source exit diameters of 3.2 and 6.4 mm, source Reynolds numbers of 2,500–16,000, source/ambient velocity ratios of 4–35, source/ambient density ratios (for buoyant flows) of 1.073 and 1.150, volumes of injected source fluid (for thermals and puffs) comprising 16–318 source diameters, streamwise (vertical) penetration distances of 0–200 source diameters and 0–13 Morton length scales (for buoyant flows) and crosstream (horizontal) penetration distances of 0–620 source diameters. Near-source behavior varied significantly with source properties but the flows generally became turbulent for streamwise distances within 5 source diameters from the source and became self-preserving for streamwise distances from the source greater than 40–50 source diameters. Crosstream motion satisfied the no-slip convection approximation. Streamwise motion for self-preserving conditions satisfied the behavior of corresponding self-preserving flows in still fluids: round thermals and puffs in still fluids for round thermals and puffs in crossflow and two-dimensional line thermals and puffs in still fluids for round starting plumes and jets in crossflow. The no-slip convection approximation for crossflow motion combined with self-preserving approximations for streamwise motion was also effective for predicting flow trajectories at self-preserving conditions for steady round turbulent plumes and jets in crossflow.


2003 ◽  
Vol 125 (6) ◽  
pp. 1046-1057 ◽  
Author(s):  
F. J. Diez ◽  
L. P. Bernal ◽  
G. M. Faeth

The self-preserving properties of round turbulent thermals, puffs, starting plumes and starting jets, in unstratified and uniform crossflow, were investigated experimentally. The experiments involved dye-containing fresh water (for nonbuoyant flows) and salt water (for buoyant flows) sources injected vertically downward into crossflowing fresh water within a water channel. Time-resolved video images of the flows were obtained using CCD cameras. Experimental conditions were as follows: source exit diameters of 3.2 and 6.4 mm, source Reynolds numbers of 2,500–16,000, source/ambient velocity ratios of 4–35, source/ambient density ratios (for buoyant flows) of 1.073 and 1.150, volumes of injected source fluid (for thermals and puffs) comprising 16–318 source diameters, streamwise (vertical) penetration distances of 0–200 source diameters and 0–13 Morton length scales (for buoyant flows) and crosstream (horizontal) penetration distances of 0–620 source diameters. Near-source behavior varied significantly with source properties and distance from the source but the flows generally became turbulent for streamwise distances within 5 source diameters from the source and became self-preserving for streamwise distances from the source greater than 40–50 source diameters. Crosstream motion satisfied the no-slip convection approximation. Streamwise motion for self-preserving conditions satisfied the behavior of corresponding self-preserving flows in still fluids: round thermals and puffs in still fluids for round thermals and puffs in crossflow and two-dimensional line thermals and puffs in still fluids for round starting plumes and jets in crossflow. The no-slip convection approximation for crossflow motion combined with self-preserving approximations for streamwise motion were also effective for predicting flow trajectories at self-preserving conditions for steady round turbulent plumes and jets in crossflow.


2003 ◽  
Vol 125 (5) ◽  
pp. 821-830 ◽  
Author(s):  
F. J. Diez ◽  
R. Sangras ◽  
G. M. Faeth ◽  
O. C. Kwon

The self-preserving properties of round buoyant turbulent starting plumes and starting jets in unstratified environments. The experiments involved dye-containing salt water sources injected vertically downward into still fresh water within a windowed tank. Time-resolved images of the flows were obtained using a CCD camera. Experimental conditions were as follows: source diameters of 3.2 and 6.4 mm, source/ambient density ratios of 1.070 and 1.150, source Reynolds numbers of 4,000–11,000, source Froude numbers of 10–82, volume of source fluid for thermals comprising cylinders having the same cross-sectional areas as the source exit and lengths of 50–382 source diameters, and streamwise flow penetration lengths up to 110 source diameters and 5.05 Morton length scales from the source. Near-source flow properties varied significantly with source properties but the flows generally became turbulent and then became self-preserving within 5 and 20–30 source diameters from the source, respectively. Within the self-preserving region, both normalized streamwise penetration distances and normalized maximum radial penetration distances as functions of time were in agreement with the scaling relationships for the behavior of self-preserving round buoyant turbulent flows to the following powers: time to the 3/4 power for starting plumes and to the 1/2 power for thermals. Finally, the virtual origins of thermals were independent of source fluid volume for the present test conditions.


2005 ◽  
Vol 127 (8) ◽  
pp. 877-887 ◽  
Author(s):  
F. J. Diez ◽  
L. P. Bernal ◽  
G. M. Faeth

The self-preserving mixing properties of steady round nonbuoyant turbulent jets in uniform crossflows were investigated experimentally. The experiments involved steady round nonbuoyant fresh water jet sources injected into uniform and steady fresh water crossflows within the windowed test section of a water channel facility. Mean and fluctuating concentrations of source fluid were measured over cross sections of the flow using planar-laser-induced-fluorescence (PLIF). The self-preserving penetration properties of the flow were correlated successfully similar to Diez et al. [ASME J. Heat Transfer, 125, pp. 1046–1057 (2003)] whereas the self-preserving structure properties of the flow were correlated successfully based on scaling analysis due to Fischer et al. [Academic Press, New York, pp. 315–389 (1979)]; both approaches involve assumptions of no-slip convection in the cross stream direction (parallel to the crossflow) and a self-preserving nonbuoyant line puff having a conserved momentum force per unit length that moves in the streamwise direction (parallel to the initial source flow). The self-preserving flow structure consisted of two counter-rotating vortices, with their axes nearly aligned with the crossflow (horizontal) direction, that move away from the source in the streamwise direction due to the action of source momentum. Present measurements extended up to 260 and 440 source diameters from the source in the streamwise and cross stream directions, respectively, and yielded the following results: jet motion in the cross stream direction satisfied the no-slip convection approximation; geometrical features, such as the penetration of flow boundaries and the trajectories of the axes of the counter-rotating vortices, reached self-preserving behavior at streamwise distances greater than 40–50 source diameters from the source; and parameters associated with the structure of the flow, e.g., contours and profiles of mean and fluctuating concentrations of source fluid, reached self-preserving behavior at streamwise (vertical) distances from the source greater than 80 source diameters from the source. The counter-rotating vortex structure of the self-preserving flow was responsible for substantial increases in the rate of mixing of the source fluid with the ambient fluid compared to corresponding axisymmetric flows in still environments, e.g., transverse dimensions in the presence of the self-preserving counter-rotating vortex structure were 2–3 times larger than transverse dimensions in self-preserving axisymmetric flows at comparable conditions.


2001 ◽  
Vol 66 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Čestmír Koňák ◽  
Jaroslav Holoubek ◽  
Petr Štěpánek

A time-resolved small-angle light scattering apparatus equipped with azimuthal integration by means of a conical lens or software analysis of scattering patterns detected with a CCD camera was developed. Averaging allows a significant reduction of the signal-to-noise ratio of scattered light and makes this technique suitable for investigation of phase separation kinetics. Examples of applications to time evolution of phase separation in concentrated statistical copolymer solutions and dissolution of phase-separated domains in polymer blends are given.


Author(s):  
Sauro Succi

This chapter introduces the main ideas behind the application of LBE methods to the problem of turbulence modeling, namely the simulation of flows which contain scales of motion too small to be resolved on present-day and foreseeable future computers. Many real-life flows of practical interest exhibit Reynolds numbers far too high to be directly simulated in full resolution on present-day computers and arguably for many years to come. This raises the challenge of predicting the behavior of highly turbulent flows without directly simulating all scales of motion which take part to turbulence dynamics, but only those that fall within the computer resolution at hand.


2021 ◽  
Author(s):  
Leonard F. Pease ◽  
Jason Serkowski ◽  
Timothy G. Veldman ◽  
Jonathan Willams ◽  
Xiao-Ying Yu ◽  
...  

Abstract In this paper, we evaluate the hypothesis that bump arrays can be used to separate particles from turbulent flows entering the array. Microfluidic bump arrays are known for separating particles by size from laminar inlet flows. However, turbulent inlet flows have not been explored but become important as microfluidic bump arrays are scaled up to mesofluidic bump arrays. We find experimentally that particle separation is indeed effective at higher Reynolds numbers. These experimental findings portend industrial scale particle separation due to the higher flow rates they facilitate.


Sign in / Sign up

Export Citation Format

Share Document