Two Dimensional Plane Strain Modeling of Tube Hydroforming

2000 ◽  
Author(s):  
G. T. Kridli ◽  
L. Bao ◽  
P. K. Mallick

Abstract The tube hydroforming process has been used in industry for several years to produce components such as exhaust manifolds. Recent advances in forming machines and machine control systems have allowed for the introduction and the implementation of the process to produce several automotive components, which were originally produced by the stamping process. Components such as side rails, engine cradles, space frames, and several others can be economically produced by tube hydroforming. The process involves forming a straight or a pre-bent tube into a die cavity using internal hydraulic pressure, which may be coupled with controlled axial feeding of the tube. One of the remaining challenges facing product and process engineers in designing hydroformed parts is the lack of an extensive knowledge base of the process. This includes a full understanding of the process mechanics and the effects of the material properties on the quality of the hydroformed product. This paper reports on the results of two dimensional plane strain finite element models of the tube hydroforming process, which were conducted using the commercial finite element code ABAQUS/Standard. The objective of the study is to examine the effects of material properties, die geometry, and frictional characteristics on the selection of the hydroforming process parameters. The paper discusses the effects of the strain-hardening exponent, friction coefficient at the die-workpiece interface, initial tube wall thickness, and die corner radii on the thickness distribution of the hydroformed tube.

2011 ◽  
Vol 473 ◽  
pp. 579-586
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of pressure path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that with increasing of the initial pressure, the bulge value of the part increases and the wrinkling value decreases. In addition, if the initial pressure is highly decreased, then bursting may occur.


2011 ◽  
Vol 110-116 ◽  
pp. 1477-1482 ◽  
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of load path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. The pressure path was obtained by using finite element simulation and its validation with experiments. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that if pressure reaches to maximum faster, bulge value and thinning of the part will be more and wrinkling value will be less.


2011 ◽  
Vol 473 ◽  
pp. 618-623
Author(s):  
Khalil Khalili ◽  
Seyed Yousef Ahmadi-Brooghani ◽  
Amir Ashrafi

Tube hydroforming process is one of the metal forming processes which uses internal pressure and axial feeding simultaneously to form a tube into the die cavity shape. This process has some advantages such as weight reduction, more strength and better integration of produced parts. In this study, T-shape tube hydroforming was analyzed by experimental and finite element methods. In Experimental method the pulsating pressure technique without counterpunch was used; so that the internal pressure was increased up to a maximum, the axial feeding was then stopped. Consequently, the pressure decreased to a minimum. The sequence was repeated until the part formed to its final shape. The finite element model was also established to compare the experimental results with the FE model. It is shown that the pulsating pressure improves the process in terms of maximum protrusion height obtained. Counterpunch was eliminated as being unnecessary. The results of simulation including thickness distribution and protrusion height were compared to the part produced experimentally. The result of modeling is in good agreement with the experiment. The paper describes the methodology and gives the results of both experiment and modeling.


2011 ◽  
Vol 130-134 ◽  
pp. 191-194
Author(s):  
Zhou De Qu

The recent application of tube hydroforming in the automotive industry demands finite element analysis, since it is rapidly being used as an effective tool for the evaluation of the design of hydroforming processes. In this paper the formability of rear sub-frame in car body with tube hydroforming is studied. The comparison of various feeding and pressure on the hydroforming process is evaluated utilizing Finite Element Method to obtain detailed information on the deformation behaviors in hydroforming of rear sub-frame. It has been shown that optical leading paths such as axial feeding and internal pressure can quantify the circumferential thickness distribution in the rear sub-frame tube periphery.


2011 ◽  
Vol 62 ◽  
pp. 21-35 ◽  
Author(s):  
Anis Ben Abdessalem ◽  
A. El Hami

In metal forming processes, different parameters (Material constants, geometric dimensions, loads …) exhibits unavoidable scatter that lead the process unreliable and unstable. In this paper, we interest particularly in tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the loading paths can lead to failure. Deterministic approaches are unable to optimize the process with taking into account to the uncertainty. In this work, we introduce the Reliability-Based Design Optimization (RBDO) to optimize the process under probabilistic considerations to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking account of the uncertainty offer to the process a high stability associated with a low probability of failure. The definition of the objective function and the probabilistic constraints takes advantages from the Forming Limit Diagram (FLD) and the Forming Limit Stress Diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning, and necking. A THP is then introduced as an example to illustrate the proposed approach. The results show the robustness and efficiency of RBDO to improve thickness distribution and minimize the risk of potential failure modes.


Author(s):  
A Ktari ◽  
A Abdelkefi ◽  
N Guermazi ◽  
P Malecot ◽  
N Boudeau

During tube hydroforming process, the friction conditions between the tube and the die have a great importance on the material plastic flow and the distribution of residual stresses of the final component. Indeed, a three-dimensional finite element model of a tube hydroforming process in the case of square section die has been performed, using dynamic and static approaches, to study the effect of the friction conditions on both plastic flow and residual stresses induced by the process. First, a comparative study between numerical and experimental results has been carried out to validate the finite element model. After that, various coefficients of friction were considered to study their effect on the thinning phenomenon and the residual stresses distribution. Different points have been retained from this study. The thinning is located in the transition zone cited between the straight wall and the corner zones of hydroformed tube due to the die–tube contact conditions changes during the process. In addition, it is clear that both die–tube friction conditions and the tube bending effects, which occurs respectively in the tube straight wall and corner zones, are the principal causes of the obtained residual stresses distribution along the tube cross-section.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

The miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and their properties (e.g., yield stress and strain hardening exponent) to determine mainly ductility loss in steel due to irradiation from the load-deflection behavior of the disk specimen. In the miniature disk bending machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with a spherical ball travels vertically. Analytical solutions for large amplitude plastic deformation become rather unwieldy. Hence, a finite element analysis has been carried out. The finite element model considers contact between the indentor and test specimen, friction between various pairs of surfaces, and elastic plastic behavior. This paper presents the load versus deflection results of a parametric study where the values of various parameters defining the material properties have been varied by ±10% around the base values. Some well-known analytical solutions to this problem have also been considered. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elastoplastic finite element solution at relatively small values of load. The finite element solution has been compared with one experimental result and values are in reasonably good agreement. With these results it will be possible to determine the material properties from the experimentally obtained values of load and deflection.


Sign in / Sign up

Export Citation Format

Share Document