Buckling of Shear-Deformable Multi-Layered Rings due to Fluid-Pressure Loading

Author(s):  
Jack McNamara ◽  
Li Liu ◽  
Anthony M. Waas

Abstract This paper is concerned with the analysis of composite rings subjected to external fluid pressure loading. Nonlinear equilibrium equations, linear stability equations, and critical fluid-pressure loads are found for thin multi-layered shear deformable rings. The extensions presented here can be shown to be generalizations of the theory given in [1]. The theory shows that introduction of multiple layers of material introduces coupling between bending and extension. The results are used to show that shear deformation is important when R h < 10 , as well as when the ratio of through thickness shear modulus to Young’s modulus becomes small. The latter has consequences when composite materials are used for the ring layers. The results are also used to show that for coupling between bending and extension the critical fluid-pressure will increase or decrease depending on the stacking sequence. For the example presented in this paper, the predicted critical fluid-pressure loading was higher for the stiffer material located on the inside of a two-layer ring. In all cases, the theoretical results are compared to a finite element method analysis.

1999 ◽  
Vol 123 (3) ◽  
pp. 436-446 ◽  
Author(s):  
Ming Feng ◽  
Kyosuke Ono ◽  
Kenji Mimura

In this paper, a new type of a clutch by the name of the variable torque clutch with skewed rollers is first introduced and second investigated both theoretically and experimentally. It is comprised of an inner and an outer race that are each in spatial line contact with the crossed axis cylindrical rollers. Torque transmission is delivered by a slipping induced between the rollers and the races due to skewing the rollers. The equations of the race surfaces are derived and the geometrical properties are analyzed. Based on the kinematic analysis, a roller-wedge model is proposed for this clutch in order to visualize the motion at the tangency of the rollers and the races. By assuming the linear distribution of the contact force along the spatial contact line, the transmitted torque capacity and kinematic characteristics can be evaluated properly from the solution of a set of nonlinear equilibrium equations. Several prototypes of this clutch are manufactured and measured to show the validity of this design idea and the theoretical results. The computational results are found to coincide with the experimental data. In addition, the influences of the design parameters on the fundamental characteristics are discussed in detail.


2011 ◽  
Vol 243-249 ◽  
pp. 6030-6035 ◽  
Author(s):  
Yuan Bing Cheng ◽  
Hong Wei Du ◽  
Xiao Yan Yang ◽  
Chao Yang

Based on the construct detail, structural behavior of cellular voided slab was analyzed. Differential equilibrium equations and formulae of flexural and torsional stiffness of the cellular voided slabs were given. Solution of deflection of cellular voided slabs fixed supported by four edges were presented by numerical simulating method. Analysis and comparison by elastic finite element method on three group ensamples were carried out. The errors in numerical solutions to finite element method analysis results are little; the solution of deflection was applicable to solve cellular voided slabs fixed supported by four edges.


1969 ◽  
Vol 184 (1) ◽  
pp. 69-82 ◽  
Author(s):  
S. M. Ibrahim ◽  
H. Mccallion

Stresses in a bimetal strip of white metal bonded to steel, to simulate a journal bearing shell or a thrust bearing ring, have been calculated for various loading conditions. The stresses arose from: fluid pressure loading on the bearing surface whilst the back was supported on a complete rigid surface; locating and holding forces, e.g. compression due to nipping-up the bearing; elastic deformation of the bearing housing; differential thermal expansion and temperature gradients, and incomplete support of the bearing shell when subjected to fluid pressure on its bearing surface. Points at which fatigue damage is likely to originate are apparent. The stresses were calculated numerically from displacements which were found, by an iterative method, to satisfy a finite difference analogue of the governing differential equations.


1991 ◽  
Vol 44 (11S) ◽  
pp. S194-S198 ◽  
Author(s):  
Anibal E. Mirasso ◽  
Luis A. Godoy

Critical and postcritical states of pseudo-conservative discrete structural systems are studied by means of a new formulation leading to a classification of critical states and to an approximate form of the postcritical equilibrium path. The nonlinear equilibrium equations are derived from the total potential energy function of a classical system, but with the addition of at least one control parameter. The follower force effect is thus included by nonlinear constraints to the equilibrium equation. The nonlinear equations are solved by perturbation techniques. Finally the theory is applied to investigate the instability of some simple mechanical models.


1997 ◽  
Vol 105 (1226) ◽  
pp. 891-896 ◽  
Author(s):  
Jun SHIMIZU ◽  
Minoru TAKAHASHI ◽  
Tsutomu ARAGAKI ◽  
Hiero UNUMA ◽  
Masanori UEKI

2003 ◽  
Vol 03 (04) ◽  
pp. 461-490 ◽  
Author(s):  
N. SILVESTRE ◽  
D. CAMOTIM

A geometrically nonlinear Generalized Beam Theory (GBT) is formulated and its application leads to a system of equilibrium equations which are valid in the large deformation range but still retain and take advantage of the unique GBT mode decomposition feature. The proposed GBT formulation, for the elastic post-buckling analysis of isotropic thin-walled members, is able to handle various types of loading and arbitrary initial geometrical imperfections and, in particular, it can be used to perform "exact" or "approximate" (i.e., including only a few deformation modes) analyses. Concerning the solution of the system of GBT nonlinear equilibrium equations, the finite element method (FEM) constitutes the most efficient and versatile numerical technique and, thus, a beam FE is specifically developed for this purpose. The FEM implementation of the GBT post-buckling formulation is reported in some detail and then employed to obtain numerical results, which validate and illustrate the application and capabilities of the theory.


Sign in / Sign up

Export Citation Format

Share Document