Operating State Historical Data Analysis to Support Gas Turbine Malfunction Detection

Author(s):  
M. Pinelli ◽  
M. Venturini

Abstract The paper describes a methodology to determine gas turbine operating state based on the analysis of normalized field data. This methodology consists in normalizing measured value with respect to that expected, calculated in the actual boundary conditions and working point. The normalization procedure, if applied on line, provides useful information to support the machine Health State determination. In this paper, the methodology has been applied to field measurements taken on a 5 MW gas turbine running in a natural gas compression plant. The first results of field measurements analysis along a two year period are presented. Relations between compressor performance drops and the probable causes of malfunctioning have been identified. Some significant results are then presented.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Mauro Venturini

A reduction of gas turbine maintenance costs, together with the increase in machine availability and the reduction of management costs, is usually expected when gas turbine preventive maintenance is performed in parallel to on-condition maintenance. However, on-condition maintenance requires up-to-date knowledge of the machine health state. The gas turbine health state can be determined by means of Gas Path Analysis (GPA) techniques, which allow the calculation of machine health state indices, starting from measurements taken on the machine. Since the GPA technique makes use of field measurements, the reliability of the diagnostic process also depends on measurement reliability. In this paper, a comprehensive approach for both the measurement validation and health state determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in a natural gas compression plant is presented.


Author(s):  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination can be performed using Gas Path Analysis (GPA) techniques, which use measurements taken on the machine to calculate the characteristic parameters that are indices of the machine health state. The number and type of characteristic parameters that can be evaluated depend on the number and type of the available measured variables. Thus, when there are not enough measured variables to determine all the characteristic parameters, some of them have to be estimated independently of the actual gas turbine health state. In this way, variations due to aging or deterioration which, in the actual machine, may occur on these last characteristic parameters, cause estimation errors on the characteristic parameters assumed as problem unknowns. In the field application of GPA techniques the available instrumentation is often inadequate to ensure reliable operating state analysis. This problem may be partially overcome using a multiple operating point minimization technique. This consists of the determination of the characteristic parameters that minimize the sum of the square differences between measured and computed values of the measurable variables in multiple operating points. In this way the lack of data is overcome by data obtained in different operating points. This paper describes a procedure for gas turbine operating state determination based on a multiple operating point minimization technique and presents a study aimed at selecting the best set and number of operating points that have to be used.


Author(s):  
M. Pinelli ◽  
M. Venturini

In the paper, a comprehensive methodology for gas turbine health state determination is applied to a single-shaft Fiat Avio TG 20 gas turbine working in the cogenerative combined cycle power plant of Fiat – Mirafiori (Italy). In order to determine operating state variations from new and clean condition, the following procedures were applied to historical field measurements: • normalization procedure to determine the variations between measured and expected values; • inverse cycle technique to calculate the values of the characteristic parameters that are indices of the machine health state. The application of these techniques to long period operating data allowed measurement validation and the determination of the machine health state. The results showed the good capability of the developed techniques for the determination and the analysis of performance drop due to compressor fouling and to turbine malfunction.


Author(s):  
M. Pinelli ◽  
M. Venturini

Health Monitoring Systems (HMS) based on operating state determination techniques that make use of field measurements are subjected to inaccuracies arising from measurements unreliability due to various kinds of uncertainties (such as sensors faults, measurements inaccuracies, etc.). In this paper, some techniques to improve the accuracy of gas turbine health state determination are presented: - a measurement conditioning technique based on the expected and trend values of measurements; - the evaluation of the best measurements/health parameters combination that should be used with respect to the gas turbine operating state determination.


Author(s):  
Tadeusz Chmielniak ◽  
Wojciech Kosman ◽  
Gerard Kosman

This paper presents a methodology of diagnostic investigations for gas turbines. The key feature is that the analysis is carried out in two modes: off-line and on-line. The first mode is performed periodically. It involves detailed measurements. Values obtained from measurements create the input data for further analysis. Health state of a gas turbine is then evaluated. The evaluation bases on calculation of several health state parameters. The on-line diagnostic mode uses these parameters as a reference state. The usual lack of measurements available in the on-line investigations creates the need for additional input data for the analysis. Therefore diagnostic investigations are supported by the results from the off-line mode. One of the main problems to be solved in diagnostic analysis is the appropriate modeling of gas turbine operation. An approach presented here regards the operation in various conditions, meaning also off-design operation.


Author(s):  
R. Bettocchi ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini ◽  
S. Sebastianelli

This paper illustrates the policy and objectives in compression system maintenance and describes a system for the health state determination of natural gas compression gas turbines based on “Gas Path Analysis”. Some results of the application of the diagnostic system to gas turbines working in a natural gas compression plant are presented.


Author(s):  
Christof Lechner ◽  
Bernward Mertens ◽  
Dieter Warnack ◽  
Dirk Weltersbach ◽  
Herwart Ho¨nen

In its Gas Turbine Development and Manufacturing Center in Berlin Siemens runs a test bed for gas turbine prototypes. Since the end of 1998, the new model V84.3A gas turbine has been undergoing tests at this facility. One focus of last year’s tests was on flow field measurements with pneumatic probes in the exit flow duct of the turbine at various load levels to characterize the flow in the diffuser and provide a data base. Another item was the further investigation of the compressor surge margin and the validation of a newly-developed on-line surge prediction system.


Author(s):  
Rolf F. Orsagh ◽  
Gregory J. Kacprzynski ◽  
Michael J. Roemer ◽  
John W. Scharschan ◽  
Daniel E. Caguiat ◽  
...  

As part of the Naval gas turbine CBM effort, diagnostic and prognostic algorithms that utilize state-of-the-art probabilistic modeling and analysis technologies are being developed and implemented onboard Navy ships. The algorithms under development and testing will enhance gas turbine preventative maintenance in such areas as compressor on-line/crank wash and fuel nozzle replacement. In one application, the prognostic module assesses and predicts compressor performance degradation due to salt ingestion. From this information, the optimum time for on-line water washing or crank washing can be determined from a cost/benefit standpoint. A second application diagnoses the severity of fuel nozzle fouling in real-time during startup. This paper discusses the diagnostic and prognostic modeling approaches to these maintenance issues and their implementation for an Allison 501-K34 gas turbine engine onboard a DDG 51 class guided missile destroyer.


Author(s):  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination consists of the assessment of the modification due to deterioration and fault of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as two nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling, and turbine erosion), occurring in one or more stages simultaneously, are reported in this paper. Moreover, compressor and turbine maps obtained through the stage-by-stage procedure are compared with the ones obtained by means of map scaling. The results show that the values of the scaling factors depend on the corrected rotational speed and on the load. However, since the variation in the scaling factors in the operating region close to the design corrected rotational speed is small, the use of the scaling factor as health indices can be considered acceptable for gas turbine health state determination at full load. Moreover, also the use of scaled maps in order to represent compressor and turbine behavior in deteriorated conditions close to the design corrected rotational speed can be considered acceptable.


Author(s):  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination can be performed using Gas Path Analysis (GPA) techniques, which use measurements taken on the machine to calculate the characteristic parameters that are indices of the machine health state. The number and type of characteristic parameters that can be evaluated depend on the number and type of the available measured variables. Thus, when there are not enough measured variables to determine all the characteristic parameters, some of them have to be estimated independently of the actual gas turbine health state. In this way, variations due to aging or deterioration which, in the actual machine, may occur on these last characteristic parameters, cause estimation errors on the characteristic parameters assumed as problem unknowns. The available instrumentation in field applications is often inadequate to ensure reliable operating state analysis when GPA-based techniques are used. This problem may be partially overcome using a multiple operating point minimization technique. This consists of the determination of the characteristic parameters that minimize the sum of the square differences between measured and computed values of the measurable variables in multiple operating points. In this way the lack of data is overcome by data obtained in different operating points. This paper describes a procedure for gas turbine operating state determination based on a multiple operating point minimization technique and presents a study aimed at selecting the best set and number of operating points that should be used.


Sign in / Sign up

Export Citation Format

Share Document