Dynamic Modeling of Overconstrained Parallel Robot

2013 ◽  
Vol 373-375 ◽  
pp. 34-37
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Jian Wei Sun

The dynamic modeling method for parallel robot based on the principle of virtual work and equivalent tree structure is proposed by taking off the platform and the chains as well as degenerating parallel robot into a tree structure, the closed-form solutions for the inverse and forward dynamics models of parallel robot are derived. The method is applied on kinematics and dynamics analysis of a representative 3-RRR spherical parallel robot.

2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983475 ◽  
Author(s):  
Tao Zhao ◽  
Bin Zi ◽  
Sen Qian ◽  
Zeqiang Yin ◽  
Dan Zhang

To obtain better flexibility and multifunction in varying practical applications, several typical configurations of a modular reconfigurable cable-driven parallel robot are analyzed in this article. The spatial topology of the modular reconfigurable cable-driven parallel robot can be reconfigured by manually detaching or attaching the different number of modular branches as well as changing the connection points on the end-effector to satisfy diverse task requirements. The structure design of the modular reconfigurable cable-driven parallel robot is depicted in detail, including the design methodology, mechanical description, and control architecture. The inverse kinematics and dynamics of the modular reconfigurable cable-driven parallel robot considering diverse configurations are derived according to the vector closed rule and Lagrange method, respectively. The numerical simulation and related experiments of a typical configuration are achieved and analyzed. The results verify the effectiveness and feasibility of the inverse kinematics and dynamics models for the modular reconfigurable cable-driven parallel robot.


Robotica ◽  
2019 ◽  
Vol 38 (2) ◽  
pp. 299-316 ◽  
Author(s):  
Siamak Pedrammehr ◽  
Houshyar Asadi ◽  
Saeid Nahavandi

SummaryThis paper investigates the vibrations of hexarot simulators. The generalized modeling of kinematics and dynamics formulation of a hexarot mechanism is addressed. This model considers the flexible manipulator with the base motion. The dynamic formulation has been developed based on the principle of virtual work. The dynamic model consists of the stiffness of the different parts of the mechanism, the effects of gravity and inertia, torque and force related to the joints viscous friction. Finally, the response of the end effector at various frequencies has been presented, and the vibrations of the mechanism and the dynamic stability index have been investigated.


2001 ◽  
Author(s):  
Miguel Almonacid ◽  
Sunil K. Agrawal ◽  
Rafael Aracil ◽  
Roque J. Saltarén

Abstract This paper presents the dynamic analysis of a six-degree of freedom (dof) parallel robot based on multibody dynamics. The robot is also known as Stewart-Gough platform. The inverse and forward dynamic analysis is presented based on the Newton-Euler formulation with the imposition of the constraints through Lagrange multipliers and the application of the principle of virtual work. The singularity problem within the workspace is also focused and 3D surfaces where the robot reach singular configurations are shown. Finally, simulations for the inverse and forward dynamic of the robot have been carried out showing the computational cost.


Robotica ◽  
2015 ◽  
Vol 34 (6) ◽  
pp. 1383-1402 ◽  
Author(s):  
Ali Taherifar ◽  
Hassan Salarieh ◽  
Aria Alasty ◽  
Mohammad Honarvar

SUMMARYThe N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on the principle of virtual work and link Jacobian matrices. Finally, the numerical example is presented for some trajectories.


2012 ◽  
Vol 476-478 ◽  
pp. 1112-1115
Author(s):  
Yi Li Zheng ◽  
Jin Hao Liu ◽  
Jiang Ming Kan

Aiming at the forest and wetland environment exploration mission, the mechanical structure and motion characteristic of a four-legs jumping robot are given particularly. Using the principle of virtual work states, the simplified dynamic model of one jumping leg is derived under some assumptions, and the relationship between the jumping height and thrust force of the leg is given and simulated. The simulation result have demonstrated the feasibility and validity of the theoretical analysis for the jumping robot.


Robotica ◽  
2014 ◽  
Vol 34 (9) ◽  
pp. 1948-1960 ◽  
Author(s):  
M. Filipovic ◽  
A. Djuric ◽  
Lj. Kevac

SUMMARYThis paper presents design, modelling and analysis of the selected Rigid ropes S-type Cable-suspended Parallel Robot (RSCPR). The characteristic of this system is its geometric construction which defines the kinematic model through the Jacobian matrix. The relationship between external and internal forces is defined by the Lagrange principle of virtual work. The Jacobian matrix is directly involved in the application of the Lagrange principle of virtual work and generation of the dynamic model of the RSCPR system. Selected examples of the CPR system types are analysed and the comparison of their results is presented. The software package named ORIGI has been developed for the RSCPR model verification.


Sign in / Sign up

Export Citation Format

Share Document