Nonlinear Effects on Coexistence Phenomenon in Parametric Excitation

2002 ◽  
Author(s):  
Leslie Ng ◽  
Richard Rand

We investigate the effect of nonlinearites on a parametrically excited ordinary differential equation whose linearization exhibits the phenomena of coexistence. The differential equation studied governs the stability mode of vibration in an unforced conservative two degree of freedom system used to model the free vibrations of a thin elastica. Using perturbation methods, we show that at parameter values corresponding to coexistence, nonlinear terms can cause the origin to become nonlinearly unstable, even though linear stability analysis predicts the origin to be stable. We also investigate the bifurcations associated with this instability.

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2021 ◽  
Vol 118 (14) ◽  
pp. e2019348118
Author(s):  
Guillaume Vanderhaegen ◽  
Corentin Naveau ◽  
Pascal Szriftgiser ◽  
Alexandre Kudlinski ◽  
Matteo Conforti ◽  
...  

The classical theory of modulation instability (MI) attributed to Bespalov–Talanov in optics and Benjamin–Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.


1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


2020 ◽  
Vol 5 (5) ◽  
pp. 22-27
Author(s):  
Puskar R. Pokhrel ◽  
Bhabani Lamsal

Employing the Lotka -Voltera (1926) prey-predator model equation, the system is presented with harvesting effort for both species prey and predator. We analyze the stability of the system of ordinary differential equation after calculating the Eigen values of the system. We include the harvesting term for both species in the model equation, and observe the dynamic analysis of prey-predator populations by including the harvesting efforts on the model equation. We also analyze the population dynamic of the system by varying the harvesting efforts on the system. The model equation are solved numerically by applying Runge - Kutta fourth order method.


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


Sign in / Sign up

Export Citation Format

Share Document