Efficient NC Machining Using Off-Line Optimized Feedrates and On-Line Adaptive Control

Author(s):  
N. D. Richards ◽  
B. K. Fussell ◽  
R. B. Jerard

A combination of off-line feedrate optimization and online adaptive force control is used to maintain a reference peak force during end milling for safe, accurate, and efficient machining. Feedrate optimization algorithms use geometry and force models to calculate feedrates for each tool move, based on a reference peak force. The adaptive controller adjusts the feedrate during machining to maintain the reference peak force. It is the combination of these methods that yields accurate force control, unobtainable with either method by itself. Adaptive control alone is inadequate to handle significant transient cut conditions because of the slow system response time. Optimization algorithms are subject to modeling errors that can lead to significant force errors when cutting. Design parameters for the adaptive controllers are selected using an experimentally validated machining process model. The adaptive controllers are implemented on an open architecture controlled (OAC) 3-axis NC milling machine, and evaluated using three experimental test cases: a sine cut, a prismatic cut, and a corner cut. Feedrates for each cut are first optimized off-line, then used in actual machining with and without controller action. Experimental results demonstrate the ability of the integrated system to effectively regulate peak forces for cutting conditions commonly encountered in end milling operations. In particular, a variable geometry sine cut that initiates chatter shows the advantages of the combined system.

2011 ◽  
Vol 291-294 ◽  
pp. 2965-2969
Author(s):  
Yu Jun Cai ◽  
Hua Shen ◽  
Tie Li Qi

A new cutting force model of ball-end mill with double effect is developed through analysing the machining process by using differential geometry. The cutting force model is needed to be revised for the component force in Z direction because of the offset to the actual results. The cutting force and the ball-end milling force coefficients can be given with numerical method. A feedrate optimization strategy is also proposed based on the developed cutting force model and tested effectively.


Author(s):  
Hessa Alfalahi ◽  
Federico Renda ◽  
Conor Messer ◽  
Cesare Stefanini

While the dilemma of motion tracking and force control in beating-heart surgery is previously addressed using active control architectures and rigid robotic actuators, this work leverages the highly controllable mechanical properties of concentric tube robots for intelligent, design-based force control in minimally invasive cardiac ablation. Briefly, cardiac ablation is the conventional procedure for treating arrhythmia patients, by which exposing the diseased cardiac tissue to Radio-Frequency (RF) energy restores the normal heart rhythm. Yet, the procedure suffers low success rate due to the inability of existing flexible catheters to maintain a consistent, optimal contact force between the tip electrode and the tissue, imposing the need for future repeat surgeries upon disease recurrence. The novelty of our work lies in the development of a statically-balanced compliant mechanism composed of (1) distal bi-stable concentric tubes and (2) a compliant, torsional spring mechanism that provides torque at tubes proximal extremity, resulting in an energy-free catheter with a zero-stiffness tip. This catheter is expected to maintain surgical efficacy and safety despite the chaotic displacement of the heart, by naturally keeping the tip force at an optimal level, not less and not more than the surgical requirement. The presented experimental results of the physical prototype, reflect the feasibility of the proposed design, as well as the robustness of the formulated catheter mathematical models which were uniquely deployed in the selection of the optimal design parameters.


Author(s):  
Muhammed Muaz ◽  
Sanan H Khan

A slot cutting operation is studied in this paper using a rotating/translating flat end milling insert. Milling operation usually comprises up-milling and down-milling processes. These two types of processes have different behaviors with opposite trends of the forces thus making the operation complex in nature. A detailed Finite Element (FE) model is proposed in this paper for the failure analysis of milling operation by incorporating damage initiation criterion followed by damage evolution mechanism. The FE model was validated with experimental results and good correlations were found between the two. The failure criteria field variable (JCCRT) was traced on the workpiece to observe the amount and rate of cutting during the machining process. It was found that the model was able to predict different failure energies that are dissipated during the machining operation which are finally shown to be balanced. It was also shown that the variation of these energies with the tool rotation angle was following the actual physical phenomenon that occurred during the cutting operation. Among all the energies, plastic dissipation energy was found to be the major contributor to the total energy of the system. A progressive failure analysis was further carried out to observe the nature of failure and the variation of stress components and temperature occurring during the machining process. The model proposed in this study will be useful for designers and engineers to plan their troubleshooting in various applications involving on-spot machining.


Author(s):  
Min Mao ◽  
Norman M. Wereley ◽  
Alan L. Browne

Feasibility of a sliding seat utilizing adaptive control of a magnetorheological (MR) energy absorber (MREA) to minimize loads imparted to a payload mass in a ground vehicle for frontal impact speeds as high as 7 m/s (15.7 mph) is investigated. The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The adaptive control objective is to bring the payload (occupant plus seat) mass to a stop using the available stroke, while simultaneously accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The payload is first treated as a single-degree-of-freedom (SDOF) rigid lumped mass, and two adaptive control algorithms are developed: (1) constant Bingham number control, and (2) constant force control. To explore the effects of occupant compliance on adaptive controller performance, a multi-degree-of-freedom (MDOF) lumped mass biodynamic occupant model was integrated with the seat mass. The same controllers were used for both the SDOF and MDOF cases based on SDOF controller analysis because the biodynamic degrees of freedom are neither controllable nor observable. The designed adaptive controllers successfully controlled load-stroke profiles to bring payload mass to rest in the available stroke and reduced payload decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response, although minor adjustments to the control gains enabled full use of the available stroke.


Author(s):  
K A Edge ◽  
F Gomes de Almeida

A new approach to adaptive control of manipulators is presented in this paper. The proposed controller for each individual axis is of the model reference type, designed through the use of variable structure systems theory. A novel feature of the controller is the introduction of a series-parallel model of the model-following error. The use of this model ensures system stability even if the manipulator design parameters or payload bounds are exceeded. Chattering of the system, associated with variable structure systems, is eliminated by arranging for the control objective to be physically achievable.


Author(s):  
Haojiong Zhang ◽  
Robert G. Landers ◽  
Brad A. Miller

This paper presents a control methodology that utilizes a robust model reference adaptive control technique to regulate the dynamic behavior of a coned mechanical gas face seal system in a flexibly mounted stator configuration. Individual adaptive controllers are designed for the three stator rigid body degrees of freedom based on the linear portions of their respective equations of motion. The force and moments generated within the gas film are estimated using Kalman filter-based estimators and directly cancelled in the control algorithm using offset control signals. The estimation errors are considered as bounded disturbances to the seal system and are taken into account by the robust adaptive controllers. Simulation results show that the controllers effectively stabilize the stator motion and control the stator tilts to synchronously track the rotor runout with near-zero relative misalignment magnitude and phase shift, thus, minimizing gas leakage.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


Mechatronics ◽  
1995 ◽  
Vol 5 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Anthony J. Stevens ◽  
Steven Y. Liang

Sign in / Sign up

Export Citation Format

Share Document