Effect of Moisture on the Elastic Modulus and Interfacial Adhesion of Polymer-Metal Components in Microelectronic Assemblies

Author(s):  
Timothy P. Ferguson ◽  
Jianmin Qu

Moisture poses a significant threat to the reliability of microelectronic assemblies and can be attributed as being one of the principal causes of many premature package failures. It is a multi-dimensional concern in electronic packaging, having an adverse effect on package reliability by changing both the mechanical properties and interfacial adhesion of the microelectronic assembly. In this paper, a study has been conducted to evaluate the moisture-induced degradation of both the elastic modulus of a commercially available no-flow underfill and the interfacial adhesion of the underfill to a copper alloy substrate. Three different levels of moisture preconditioning, 85C/50%RH, 85C/65%RH, and 85C/85RH%, were implemented in this study. Diffusion coefficient test specimens were constructed to experimentally measure the moisture diffusivity into the underfill resin and obtain the moisture saturation concentration for each level of moisture preconditioning. Flexural bend test specimens were made to characterize the effect of moisture on the elastic modulus of the underfill adhesive. Last, interfacial fracture toughness specimens with prefabricated interface cracks were used in a four point bending test to quantify the effect of moisture on interfacial fracture toughness. The results of this study will aid in the development of more robust microelectronic assemblies, demonstrating how both the elastic modulus and interfacial toughness change as a function of moisture concentration.

Author(s):  
Timothy P. Ferguson ◽  
Jianmin Qu

Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.


2002 ◽  
Vol 124 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Timothy Ferguson ◽  
Jianmin Qu

Moisture poses a significant threat to the reliability of microelectronic assemblies and can be attributed as being the principal cause of many premature package failures. Of particular concern is characterizing the role of moisture with respect to the acceleration of the onset of package delamination. In this paper the effect of moisture on the interfacial fracture toughness of two no-flow underfill materials with a commercially available solder mask coated FR-4 board is experimentally determined. Bilayer specimens with prefabricated interface cracks are used in a four-point bend test to quantify the interfacial fracture toughness. Two groups of test specimens of varying underfill thickness were constructed. The first group was fully dried while the other was moisture preconditioned at 85°C/85%RH for 725 hours. The results of this study show that the interfacial toughness is significantly affected by the presence of moisture.


1998 ◽  
Vol 550 ◽  
Author(s):  
Y. Sugimura ◽  
M. Spector

AbstractThis study introduces a new method for evaluating the adhesion strength of a coating on a substrate. The interfacial fracture toughness, Γi is used to assess the work per unit area required to separate an interface. Γi is measured for the as-received specimens of hydroxyapatite plasma sprayed on Ti-6A1-4V substrate. Calculation of the interfacial fracture toughness requires that the elastic modulus of the coating to be known. The Young's modulus of the plasma sprayed hydroxyapatite is assessed using a bend test. The effect of aqueous environment on the interfacial fracture toughness is also investigated.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2823
Author(s):  
Shiuh-Chuan Her ◽  
Kai-Chun Zhang

Epoxy resin with excellent mechanical properties, chemical stability, and corrosion resistance has been widely used in automotive and aerospace industries. A thin film of epoxy deposited on a substrate has great application in adhesive bonding and protective coating. However, the intrinsic brittleness of epoxy with a relatively low fracture toughness limits its applications. In this work, graphene nanoplatelets (GNP) were added to the epoxy resin to enhance its toughness, hardness, and elastic modulus. A series of nanocomposites with different loadings of GNP were fabricated. Ultrasonic sonication in combination with surfactant Triton X-100 were employed to disperse GNP in the epoxy matrix. A nanocomposite film with a thickness of 0.3 mm was deposited on an Al substrate using a spinning coating technology. The hardness and elastic modulus of the nanocomposite film on the Al substrate were experimentally measured by a nanoindentation test. Analytical expression of the mode II interfacial fracture toughness for the nanocomposite film on an Al substrate with an interfacial edge crack was derived utilizing the linear elastic fracture mechanics and Euler’s beam theory. End-notched flexure (ENF) tests were conducted to evaluate the mode II fracture toughness. It was found that the hardness, elastic modulus, and mode II fracture toughness of the nanocomposite film reinforced with 1 wt % of GNP were improved by 71.8%, 63.2%, and 44.4%, respectively, compared with the pure epoxy. The presence of much stiff GNP in the soft epoxy matrix prompts toughening mechanisms such as crack deflection and crack pinning, resulting in the improvements of the fracture toughness, hardness, and elastic modulus. Microscopic observation for the nanocomposite was examined by scanning electron microscopy (SEM) to investigate the dispersion of GNPs in the epoxy matrix. The performance of a nanocomposite film deposited on a substrate was rarely studied, in particular, for the interfacial fracture toughness of the film/substrate composite structure. Utilizing the theoretical model in conjunction with the ENF experimental test presented in this study, an accurate determination of the mode II interfacial fracture toughness of film/substrate composite structure is made possible.


Sign in / Sign up

Export Citation Format

Share Document