Effect of Surfactant Additives on Centrifugal Pump Performance

2003 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe ◽  
Asano Kimura

Performance of a centrifugal pump when handling surfactant solutions was measured experimentally. The effects of the concentration and temperature of surfactant solutions on pump performance were investigated. It was clarified that the pump efficiency with surfactant solutions was higher than that with tap water, and increased with an increase of surfactant concentration. The value of maximum flow rate of the pump also increased. The total pump head increased with an increase in the surfactant concentration, however, the shaft power decreased with a decrease in the rotational speed of the impeller. The pump efficiency is dependent on the surfactant temperature, and there is an optimal temperature which maximizes the efficiency.

2005 ◽  
Vol 128 (4) ◽  
pp. 794-798 ◽  
Author(s):  
Satoshi Ogata ◽  
Asano Kimura ◽  
Keizo Watanabe

Performance of a centrifugal pump when handling surfactant solutions was measured experimentally. It was clarified that the pump efficiency with surfactant solutions was higher than that with tap water and increased with an increase in surfactant concentration. The value of maximum flow rate also increased. The total pump head increased with an increase in concentration, and the shaft power decreased with a decrease in the impeller rotating speed. There was an optimal temperature, which maximizes the efficiency. By combining the data for the piping section and for the pump efficiency, it is possible to accurately predict the energy savings of the pumping power in the pipeline system.


2021 ◽  
Vol 5 (1) ◽  
pp. 80-88
Author(s):  
Nur Hanna Khairul Anuar ◽  
Mohd Nizar Mhd Razali ◽  
Mohamad Rusydi Mohamad Yasin ◽  
Musfirah Abdul Hadi ◽  
Abdul Nasir Abd. Ghaffar

Viscosity is one of the factors affecting the performance of the centrifugal pump. A centrifugal pump is a device that used driven motor called impeller to move fluid by rotational energy. This thesis is about the analysis of the performance of the centrifugal pump when transferring viscous liquids. For this project, the objective is to design and fabricate a device that can pump liquid with various viscosity using centrifugal pump. The liquids used in the experiment are comprised of a mixture of detergent and water with different ratio to alter the viscosity. The viscosity is being identified by the usage of Zahn Cup Method with the temperature kept constant at 26 °C throughout the experiment. The performance of the centrifugal pump is being investigated by four parameters which is the flowrate, Total Dynamic Head (TDH), power and efficiency. The performance of the centrifugal pump can be accessed by altering the pump shaft speed in order to get various reading for the flow rate. In order to alter the pump shaft speed, the usage of motor with Variable Frequency Drive (VFD) is implemented. The values for the flowrate and pump shaft power are measured by flowmeter and Variable Frequency Drive (VFD). The Total Dynamic Head (TDH), hydraulic power and pump efficiency is calculated based on the reading of the flowmeter and pump shaft power displayed at Variable Frequency Drive (VFD). At the end of this project, the pump performance while pumping different viscous liquids at different flowrates is being identified.


Author(s):  
Katsumi Chiba ◽  
Yukio Ito ◽  
Kazunori Kobayashi ◽  
Atsushi Kawamorita

In many manufacture fields, such as foods, medical supplies, cosmetics, lubricants and paints of present in used, a Shear pump successively takes advantage of such cavitation effects as a large amount of cavitation bubbles and the associated impulsive high shock pressures, to the mixing, to the stirring and to the emulsion. In this study, to estimate the behavior of the cavitation effects in the shear pump, we precisely evaluate the performance. Although the performance of the shear pump, that is the total head Hp, the shaft power Ps, the pump efficiency η — the flow rate Q curves, is very similar to those of the centrifugal pump tested in tap water, they are much different from that in higher viscosity solutions of 500 cP.


2021 ◽  
Author(s):  
Ning Zhang ◽  
Junxian Jiang ◽  
Xiaokai Liu ◽  
Bo Gao

Abstract High pressure pulsations excited by rotor stator interaction is always focused in pumps, especially for its control considering the stable operation. In the current research, a special staggered impeller is proposed to reduce intense pressure pulsations of a centrifugal pump with ns=69 based on alleviating rotor stator interaction. The numerical simulation method is conducted to illustrate the influence of staggered impeller on the pump performance and pressure pulsations, and three typical flow rates (0.8ФN-1.2ФN) are simulated. Results show that the staggered impeller will lead to the pump head increasing, and at the design working condition, the increment reaches about 3% compared with the original impeller. Meanwhile, the pump efficiency is little affected by the staggered impeller, which is almost identical with the original impeller. From comparison of pressure spectra at twenty monitoring points around the impeller outlet, it is validated that the staggered impeller contributes significantly to decreasing pressure pulsations at the concerned working conditions. At the blade passing frequency, the averaged reduction of twenty points reaches 89% by using the staggered impeller at 1.0ФN. The reduction reaches to 90%, 80% at 0.8ФN, 1.2ФN respectively. Caused by the rib within the staggered impeller, the internal flow field in the blade channel will be affected. Finally, it is concluded that the proposed staggered impeller surely has a significant effect on alleviating intense pressure pulsation of the model pump, which is very promising during the low noise pump design considering its feasibility for manufacturing.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Zhenfa Xu ◽  
Fanyu Kong ◽  
Lingfeng Tang ◽  
Mingwei Liu ◽  
Jiaqiong Wang ◽  
...  

Blade thickness is an essential parameter of the impeller, which has significant effects on the pump performance. The plastic pump generally adopts thick blade due to low strength of plastic. The effects of blade thickness on the internal flow and performance of a plastic centrifugal pump were discussed based on the numerical methods. Two kinds of blade profile, the constant thickness blade (CTB) and the variable thickness blade (VTB), were investigated. The results indicated that, for the CTB, when the blade thickness was less than 6 mm, the pump performance did not change significantly. When the blade thickness exceeded 6 mm, the pump head and efficiency decreased rapidly. The pump head and efficiency of CTB 10 decreased by 42.2% and 30% compared with CTB 4, respectively. For the VTB, with blade thickness in a certain range (6 mm–14 mm), the pump performance changed slightly with the increased of trailing edge thickness. The minimum blade thickness of the plastic centrifugal pump should be 4 mm based on the finite element analysis. A variable thickness blade (VTB 4-8-4) with the maximum thickness located at 60% chord length was proposed to improve the pump performance, and its efficiency was 1.67% higher than that of the CTB 4 impeller.


Author(s):  
Zhengjing Shen ◽  
Wuli Chu

Sediment erosion is recognized as a serious engineering problem in slurry handling such as screw centrifugal pump, which has wide efficiency region and non-plugging performance. In the present study, the screw centrifugal pump was simulated based on the Euler-Lagrange method. The Mclaury model was adopted for the erosion prediction of flow passage components. By analyzing the correlation factor functions contained in the erosion model and performing some preliminary research with a simplified model, particle velocity, particle shape factor and particle concentration were selected as the influencing factors to analysis the quantitative relationship among particle parameters, erosion wear and performance of screw centrifugal pump. The results show that the erosion of volute casing is higher than impeller, and the erosion rate of suction side is higher than pressure side. The particles velocity is positively correlated with erosion wear and pump performance reduction rate. While the increase of particles shape factor shows the opposite trend. Erosion rate is found to be increases sharply and then slowly when particles concentration increases, because of the adhesion effect of sand particles in the volute casing inhibits the total erosion wear. The increase of erosion rate promoted the reduction rate of pump performance, and the pump efficiency decreased more significantly when the erosion rate increased to a certain extent. The results of this study are of great significance for further optimization of hydraulic design and structural design for screw centrifugal pump.


2006 ◽  
Vol 128 (6) ◽  
pp. 1281-1288 ◽  
Author(s):  
Jacob C. Allen ◽  
Phillip M. Ligrani

This paper describes the optimization of rotary shaft pump performance, which is accomplished by comparing the performance of four different centrifugal rotary pump configurations: hooked blades pump, backward-curved blades ID=12.7mm pump, contoured base pump, and backward-curved blades ID=19.1mm pump. Each of these devices utilizes a unique and simple impeller design where the blades are directly integrated into a shaft with an outer diameter of 25.4mm. Presented for each pump are performance data including volumetric flow rate, pump head, and hydraulic efficiency. When pumping water, the most optimal arrangement with the hooked impeller blades produces a maximum flow rate of 3.22L∕min and a pump head as high as 0.97m.


2005 ◽  
Author(s):  
Satoshi Ogata ◽  
Takeshi Fujita

The effect of surfactant solutions on the boundary layer over a flat plate has been investigated in the Reynolds number range of approximately Re < 153,000. Experiments were carried out by measuring the velocity profile using a PIV system. Surfactant solutions tested were aqueous solutions of oleyl-bihydroxyethyl methyl ammonium chloride (Ethoquad O/12) in the concentration range of 50 to 500 ppm, to which sodium salicylate was added as a counterion. It was clarified that the boundary layer thickness of surfactant solutions increases significantly near the leading edge comparing with that of tap water, and parallelly develops in that obtained by the Blasius equation. For lower surfactant concentration (50 and 200 ppm) the velocity profile near the wall is distributed between that of laminar flow and turbulent flow for Newtonian fluid. When the Reynolds number increases, the velocity profile gradually increases from the outer edge of the boundary, and approaches the turbulent velocity profile of Newtonian fluid. For higher surfactant concentration (500 ppm), the velocity profile shows large S-shape. The velocity profile does not change very much, even if the Reynolds increases. The shape parameter with surfactant solutions decreases slightly comparing that of tap water at Re < 92,000, The value of shape parameter H with surfactant solution shows 1.66 < H < 2.32.


Author(s):  
Susanta K. Das

Centrifugal pumps vane geometry plays an important role in pump’s overall performance. Thus, to know the impeller vane geometry effects on the performance of a centrifugal pump are essential from pump’s design point of view. In this study, an experimental investigation is carried out to judge the impeller vane geometry effects on the performance of a centrifugal pump. The performance of three different impeller vane geometries is evaluated in this investigation. To acquire pump performance and characteristics curves, inlet and outlet valves were manually adjusted and the pump’s rpm were varied remotely through computer control. The pressure data were obtained via installed flow rotameter for different flow rates with constant pump speed – 1800 rpm. Experimental data were used to calculate different physical parameters, such as the pump head, water horsepower — the power added to the fluid, power input to the pump–brake horse power, and pump efficiency for each of impeller vane geometries. The pump’s performance curves and the system curves were then plotted for each of the vane geometries. The results show that the pump performance as well as efficiency varies significantly for each of the impeller vane geometries. The results help to understand how to determine appropriate operating conditions and design parameters for different impeller vane geometries for obtaining optimized pump performance.


Sign in / Sign up

Export Citation Format

Share Document