Effect of Particle Parameters on Erosion Wear and Performance of Screw Centrifugal Pump

Author(s):  
Zhengjing Shen ◽  
Wuli Chu

Sediment erosion is recognized as a serious engineering problem in slurry handling such as screw centrifugal pump, which has wide efficiency region and non-plugging performance. In the present study, the screw centrifugal pump was simulated based on the Euler-Lagrange method. The Mclaury model was adopted for the erosion prediction of flow passage components. By analyzing the correlation factor functions contained in the erosion model and performing some preliminary research with a simplified model, particle velocity, particle shape factor and particle concentration were selected as the influencing factors to analysis the quantitative relationship among particle parameters, erosion wear and performance of screw centrifugal pump. The results show that the erosion of volute casing is higher than impeller, and the erosion rate of suction side is higher than pressure side. The particles velocity is positively correlated with erosion wear and pump performance reduction rate. While the increase of particles shape factor shows the opposite trend. Erosion rate is found to be increases sharply and then slowly when particles concentration increases, because of the adhesion effect of sand particles in the volute casing inhibits the total erosion wear. The increase of erosion rate promoted the reduction rate of pump performance, and the pump efficiency decreased more significantly when the erosion rate increased to a certain extent. The results of this study are of great significance for further optimization of hydraulic design and structural design for screw centrifugal pump.

2021 ◽  
Vol 5 (1) ◽  
pp. 80-88
Author(s):  
Nur Hanna Khairul Anuar ◽  
Mohd Nizar Mhd Razali ◽  
Mohamad Rusydi Mohamad Yasin ◽  
Musfirah Abdul Hadi ◽  
Abdul Nasir Abd. Ghaffar

Viscosity is one of the factors affecting the performance of the centrifugal pump. A centrifugal pump is a device that used driven motor called impeller to move fluid by rotational energy. This thesis is about the analysis of the performance of the centrifugal pump when transferring viscous liquids. For this project, the objective is to design and fabricate a device that can pump liquid with various viscosity using centrifugal pump. The liquids used in the experiment are comprised of a mixture of detergent and water with different ratio to alter the viscosity. The viscosity is being identified by the usage of Zahn Cup Method with the temperature kept constant at 26 °C throughout the experiment. The performance of the centrifugal pump is being investigated by four parameters which is the flowrate, Total Dynamic Head (TDH), power and efficiency. The performance of the centrifugal pump can be accessed by altering the pump shaft speed in order to get various reading for the flow rate. In order to alter the pump shaft speed, the usage of motor with Variable Frequency Drive (VFD) is implemented. The values for the flowrate and pump shaft power are measured by flowmeter and Variable Frequency Drive (VFD). The Total Dynamic Head (TDH), hydraulic power and pump efficiency is calculated based on the reading of the flowmeter and pump shaft power displayed at Variable Frequency Drive (VFD). At the end of this project, the pump performance while pumping different viscous liquids at different flowrates is being identified.


2003 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe ◽  
Asano Kimura

Performance of a centrifugal pump when handling surfactant solutions was measured experimentally. The effects of the concentration and temperature of surfactant solutions on pump performance were investigated. It was clarified that the pump efficiency with surfactant solutions was higher than that with tap water, and increased with an increase of surfactant concentration. The value of maximum flow rate of the pump also increased. The total pump head increased with an increase in the surfactant concentration, however, the shaft power decreased with a decrease in the rotational speed of the impeller. The pump efficiency is dependent on the surfactant temperature, and there is an optimal temperature which maximizes the efficiency.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Zhenfa Xu ◽  
Fanyu Kong ◽  
Lingfeng Tang ◽  
Mingwei Liu ◽  
Jiaqiong Wang ◽  
...  

Blade thickness is an essential parameter of the impeller, which has significant effects on the pump performance. The plastic pump generally adopts thick blade due to low strength of plastic. The effects of blade thickness on the internal flow and performance of a plastic centrifugal pump were discussed based on the numerical methods. Two kinds of blade profile, the constant thickness blade (CTB) and the variable thickness blade (VTB), were investigated. The results indicated that, for the CTB, when the blade thickness was less than 6 mm, the pump performance did not change significantly. When the blade thickness exceeded 6 mm, the pump head and efficiency decreased rapidly. The pump head and efficiency of CTB 10 decreased by 42.2% and 30% compared with CTB 4, respectively. For the VTB, with blade thickness in a certain range (6 mm–14 mm), the pump performance changed slightly with the increased of trailing edge thickness. The minimum blade thickness of the plastic centrifugal pump should be 4 mm based on the finite element analysis. A variable thickness blade (VTB 4-8-4) with the maximum thickness located at 60% chord length was proposed to improve the pump performance, and its efficiency was 1.67% higher than that of the CTB 4 impeller.


Author(s):  
Susanta K. Das

Centrifugal pumps vane geometry plays an important role in pump’s overall performance. Thus, to know the impeller vane geometry effects on the performance of a centrifugal pump are essential from pump’s design point of view. In this study, an experimental investigation is carried out to judge the impeller vane geometry effects on the performance of a centrifugal pump. The performance of three different impeller vane geometries is evaluated in this investigation. To acquire pump performance and characteristics curves, inlet and outlet valves were manually adjusted and the pump’s rpm were varied remotely through computer control. The pressure data were obtained via installed flow rotameter for different flow rates with constant pump speed – 1800 rpm. Experimental data were used to calculate different physical parameters, such as the pump head, water horsepower — the power added to the fluid, power input to the pump–brake horse power, and pump efficiency for each of impeller vane geometries. The pump’s performance curves and the system curves were then plotted for each of the vane geometries. The results show that the pump performance as well as efficiency varies significantly for each of the impeller vane geometries. The results help to understand how to determine appropriate operating conditions and design parameters for different impeller vane geometries for obtaining optimized pump performance.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Guiqin Liu ◽  
Weng Kong Chan

In order to help the design of miniature centrifugal pumps, the design method for macrosize centrifugal pumps is reviewed and the critical parameter, the flow coefficient, is examined in this paper for the miniature centrifugal pumps. The performance of the pumps designed is analyzed theoretically, numerically, and experimentally. Both numerical and theoretical results show that the value of the optimized flow coefficient is approximately 1.47. This value is about five times larger than the recommended value using conventional design technique for macrosize pumps. The optimum radius ratio obtained numerically is approximately 0.4. It can be concluded that the design approach for macrosize pumps is not applicable for pumps in the scale of decimeters. The results obtained in the present study provide us guidelines on the design and performance study of the miniature centrifugal pump.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rouhollah Torabi ◽  
Seyyed Ahmad Nourbakhsh

Centrifugal pump delivery head and flow rate drop effectively during the pumping of viscous fluids. Several methods and correlations have been developed to predict reduction rate in centrifugal pump performance when handling viscous fluids, but their results are not in very good agreement with each other. In this study, a common industrial low specific speed pump, which is extensively used in different applications, is studied. The entire pump, including impeller, volute, pipes, front and rear sidewall gaps, and balance holes, is simulated in Computational Fluid Dynamics and 3D full Navier Stokes equations are solved. CFD results are compared with experimental data such as pump performance curves, static pressure in casing, and disk friction loss. Dimensionless angular velocity and leakage rate are investigated in sidewall gap and efficiency variation due to viscosity is studied. The results demonstrate that the behavior of the fluid in sidewall gap is strictly sensitive to viscosity. Increasing viscosity improves the volumetric efficiency by reducing internal leakage through wear rings and balance holes, causing, however, a significant fall in the disk and overall efficiency. Results lead to some recommendations for designing centrifugal pumps which may be used in transferring viscous fluids.


2021 ◽  
Vol 9 (8) ◽  
pp. 836
Author(s):  
Xijie Song ◽  
Rao Yao ◽  
Yubin Shen ◽  
Huili Bi ◽  
Yu Zhang ◽  
...  

Due to the high sediment content in the Yellow River, the pump units in the pumping stations along the line are often eroded by sediment, causing the reduction of pump efficiency and structural damage. The purpose of this paper is to study the influence of particle diameter on the particle track, erosion distribution and erosion rate in a double-suction centrifugal pump in a pumping station of the Yellow River with a Lagrangian particle-tracking approach and a Tabakoff erosion model. The results show that the surface erosion of the impeller on both sides in the double-suction centrifugal pump has an asymmetric distribution, and the erosion rate on both sides is different. The particle diameter affects the moving trajectory of particles and has a significant effect on the erosion morphology and position in the impeller. With the increase of particle diameter, the velocity of the particles moving towards the pressure side of the blade inlet increases, resulting in punctate impact erosion. When the particle diameter decreases, sliding abrasion gradually forms on the pressure side of the blade outlet. The change rule of the solid particle volume fraction on the impeller wall is consistent with that of erosion distribution on the impeller wall. The larger the solid volume fraction is, the higher the wall erosion rate is.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5082
Author(s):  
Virgel M. Arocena ◽  
Binoe E. Abuan ◽  
Joseph Gerard T. Reyes ◽  
Paul L. Rodgers ◽  
Louis Angelo M. Danao

Like any other turbomachinery, it is essential that the hydraulic behavior and performance of mixed-flow pumps are evaluated way in advance prior to manufacturing. Pump performance relies heavily on the proper design of the intake structure. Intake structures should be accurately designed in order to minimize and avoid unnecessary swirl and vortex formations. Ensuring the optimum performance condition as well as predicting how a particular intake structure affects the efficiency of the pump often requires either physical model studies or theoretical evaluations. Unfortunately, physical models are costly, time-consuming, and site-specific. Conversely, design and performance predictions using a theoretical approach merely gives performance values or parameters, which are usually unable to determine the root cause of poor pump performance. This study evaluates the viability of using Computational Fluid Dynamics (CFD) as an alternative tool for pump designers and engineers in evaluating pump performance. A procedure for conducting CFD simulations to verify pump characteristics such as head, efficiency, and flow as an aid for preliminary pump design is presented. Afterwards, a multiphase simulation using the VOF approach is applied to compare the fluid dynamics between four different pump intake structures. A full-sized CFD model of the pump sump complete with the pump’s active components was used for the intake structure analysis in order to avoid scaling issues encountered during the reduced-scale physical model test. The results provided a clear illustration of the hydraulic phenomena and characteristic curves of the pump. A performance drop in terms of reduction in TDH was predicted across the various intake structure designs. The CFD simulation of intake structure provided a clear insight on the varying degree of swirl, flow circulation, and effect on pump efficiency between all four cases.


2018 ◽  
Vol 20 (2) ◽  
pp. 29-35
Author(s):  
Adam Hafizar Pohan

This study was conducted to identify the performance of centrifugal pump series configuration and parallel configuration experimentally and Ansys simulation. In the previous study, the performance of centrifugal pumps was calculated by varying the valve opening. In this study researchers varied motor rotation of 1000 rpm, 1200 rpm, 1400 rpm, 1600 rpm and 1800 rpm with open valve 100%. The results show that series configuration has higher head value than parallel configuration. While the parallel configuration has a higher capacity value than the series configuration. The highest pump efficiency for this pump performance test is in series configuration of 1800 rpm is 83.4% for experimental and 85% for simulation. While the lowest pump efficiency is in parallel configuration pumps of 1800 rpm with an efficiency 14.1% for experimental and 15.5% for simulation.


Author(s):  
Linda Sadik ◽  
Badih Jawad ◽  
Munther Y. Hermez ◽  
Liping Liu

Abstract Optimizing the high efficiency design of centrifugal pumps requires a detailed understanding of the internal flow. The prediction of the flow inside the pump can be acquired by understanding the rotatory motion and the three-dimensional shape of the impellers, as well as its fundamental unsteady behavior. The flow inside a centrifugal pump is three-dimensional, unsettled and always associated with secondary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow, known as recirculation, starts to begin. Inside this, the separation of flow increases, which creates vortices and cause local pressure to decrease, which induces cavitation. This phenomenon of recirculation will increase the Net Positive Suction Head Required (NPSHR). Improving the suction performance continues to remain a vital and continuous topic in the development and application of centrifugal pumps. In this research, the focal point is to enhance the pump suction performance under low flow rates by modifying the impeller design. This research entails a numerical simulation investigation on the addition of three different designs, each consisting of two cylindrical disks at the impeller inlet suction. It is hypothesized that these modifications will assist suppressing the recirculation phenomenon. The turbulent flow within the centrifugal pump was analyzed by applying the Reynolds-Averaged Navier-Stokes equations and the k–ϵ equations for turbulence modelling. The computational domain consists of the inlet, impeller, diffuser and outlet. Analysis of ΔP, torque data and pump efficiency was conducted. The application of CFD solvers to predict pump performance resulted in reduced prices for testing as well as pump development time. The numerical simulation concluded that placing 3-D multi-cylindrical disks at the impeller inlet section improved the centrifugal pump performance under low flow rates. The model design 1 resulted in a pump efficiency improvement of about 5% at low flow rates by lowering the amount of flow leaking back (re-circulation) through the internal suction.


Sign in / Sign up

Export Citation Format

Share Document