Numerical Simulation of Hydraulically Actuated Natural Gas Compressors

2003 ◽  
Author(s):  
Philip G. Hill ◽  
Shahin Hessami ◽  
Anker Gram

A numerical simulation has been developed to assist in design of low-speed hydraulically actuated compressors delivering natural gas at overall pressure ratios of 90: 1. The model has been used to estimate the effect of heat transfer during compression, the effects of reduced inter-stage volume, and the effects of departures from ideal gas behavior during the last stage of compression. It estimates overall compression efficiency, volumetric efficiency and cylinder pressures as a function of time. The model is capable of estimating dynamic behavior in intercooler passages when inter-stage volumes are small, and has been adapted to two or three stages.

2013 ◽  
Vol 483 ◽  
pp. 162-165
Author(s):  
Su Hou De ◽  
Zhang Yu Fu ◽  
Ji Yong Che ◽  
Xiao Long Wen

The flow of liquefied natural gas (LNG) which was coupled between heat transfer and fluid-flow in rib-tube was studied in this paper. Based on theoretical analysis, the model and wall-function were chosen to simulate the flow field of rib-tube, and the multiphase flow was described by the mixture model, in which the dispersed phase was defined by different velocity. In addtion, self-defining functions were used and governing equations were set up to solve the dispersed phase, and the result were compared with the experiment. The process of fluid-flow and heat exchange on rib-tube was simulated, and the contours of temperature, pressure, velocity, gas fraction were obtained, which showed that, the parameters of above changed when the temperature was rising and the LNG evaporating along the rib-tube, and a mixed process existed in the middle of the heat tube.


2018 ◽  
Vol 15 (30) ◽  
pp. 609-626
Author(s):  
B. A. UNASPEKOV ◽  
R. BAZAROV ◽  
S. S. AUELBEKOV ◽  
T. I. IRGIBAEV ◽  
O. D. SEITKAZINOV ◽  
...  

The features of heat and mass transfer inlining of high-temperature tunnel kiln for the burning of refractory materials are revealed by numerical simulation of heat transfer processes. Use of modern computer calculation programs permits to choose optimal constructions of trolley walls and heart lining. This ensures improved hermeticity of workspace and 15-20% reduction of heat loss. We studied the operation of a hightemperature of the unit with a combined system that ensured efficient burning of natural gas as well as regulation of temperature regime in the thermal aggregate workspace. A procedure was advanced to calculate consumption of fuel by gas burners and hot air over burning zone positions of high-temperature tunnel kilns when using a combined system of natural gas burning. The heat work of a tunnel kiln was optimized. This permitted to supply maximal quantity of hot air and natural gas into the initial positions of burning zone of tunnel kiln and to ensure technologically required temperatures of products burning (1780-1800ºС).


2012 ◽  
Vol 19 ◽  
pp. 406-416
Author(s):  
ZHUOPEI LI ◽  
YANLONG JIANG ◽  
ZHIHUA GAN ◽  
LIMIN QIU

Regenerator is a key component for all regenerative cryocoolers. 4K regenerative cryocoolers can be applied to provide cooling for low temperature superconductors, space and military infrared detectors, and medical examination etc. Stirling type pulse tube cryocoolers (SPTC), one type of regenerative cryocoolers, operate at high frequencies. As a result, SPTCs have the advantage of compact structure and low weight compared with G-M type pulse tube cryocoolers operating at low frequencies. However, as the frequency increase the thermal penetration depth of helium gas in the regenerator is greatly reduced which makes the heat transfer between the gas and the regenerator worse. In order to improve the heat transfer efficiency, regenerator materials with smaller hydraulic diameters are used. Therefore the flow resistance between the gas and the regenerator material will increase leading to larger pressure drop from the hot end to the cold end of the regenerator. The cooling performance is deteriorated due to the decreased pressure ratio (maximum pressure divided by minimum pressure) at the cold end. Also, behavior of helium at 4K deviates remarkably from that of ideal gas which has a significant influence both the flow and heat transfer characteristic within a regenerator. In this paper numerical simulation on the behavior of a 4K regenerator at high frequency is carried out to provide guidance for the optimization of the flow and heat transfer performance within a regenerator. Thermodynamic analysis of effect of the non-ideal gas behavior of helium at 4K on 4K regenerator at high frequency is investigated.


2014 ◽  
Vol 960-961 ◽  
pp. 438-441 ◽  
Author(s):  
Hai Yu Meng ◽  
Shu Zhong Wang ◽  
Lu Zhou ◽  
Zhi Qiang Wu ◽  
Jun Zhao ◽  
...  

The submerged combustion vaporizer (SCV) is a kind of equipment used for liquefied natural gas (LNG) vaporization. In order to get insights into the heat transfer of supercritical LNG, numerical simulations were carried out in this paper for investigating heat transfer of LNG in horizontal circular tubes under supercritical pressure. Numerical results showed that LNG temperature at the outlet under the design parameters was 276 K which met the demands of application. The velocity of LNG at the outlet was 12 m/s, and the pressure drop along the ducts was 120 kPa.


Sign in / Sign up

Export Citation Format

Share Document