Routes to Chaos in Squeeze-Film Dampers

2004 ◽  
Author(s):  
Jawaid I. Inayat-Hussain ◽  
Njuki W. Mureithi

This work reports on a numerical study undertaken to investigate the imbalance response of a rigid rotor supported by squeeze-film dampers. Two types of damper configurations were considered, namely, dampers without centering springs, and eccentrically operated dampers with centering springs. For a rotor fitted with squeeze-film dampers without centering springs, the study revealed the existence of three regimes of chaotic motion. The route to chaos in the first regime was attributed to a sequence of period-doubling bifurcations of the period-1 (synchronous) rotor response. A period-3 (one-third subharmonic) rotor whirl orbit, which was born from a saddle-node bifurcation, was found to co-exist with the chaotic attractor. The period-3 orbit was also observed to undergo a sequence of period-doubling bifurcations resulting in chaotic vibrations of the rotor. The route to chaos in the third regime of chaotic rotor response, which occurred immediately after the disappearance of the period-3 orbit due to a saddle-node bifurcation, was attributed to a possible boundary crisis. The transitions to chaotic vibrations in the rotor supported by eccentric squeeze-film dampers with centering springs were via the period-doubling cascade and type 3 intermittency routes. The type 3 intermittency transition to chaos was due to an inverse period-doubling bifurcation of the period-2 (one-half subharmonic) rotor response. The unbalance response of the squeeze-film-damper supported rotor presented in this work leads to unique non-synchronous and chaotic vibration signatures. The latter provide some useful insights into the design and development of fault diagnostic tools for rotating machinery that operate in highly nonlinear regimes.

Author(s):  
Jawaid Iqbal Inayat-Hussain ◽  
Hiroshi Kanki ◽  
Njuki W. Mureithi

Abstract In the unbalance response analysis of rotors supported by squeeze-film dampers with centering springs, the fluid-film forces are usually computed based on the assumption that the rotor exhibits a circular centered whirl orbit motion. The validity of this assumption is, however, limited to the ideal case of squeeze-film dampers with centering springs that are perfectly adjusted to offset the gravitational force. In most practical applications, eccentric operation of these dampers is almost unavoidable since precise setting of the centering springs in a real environment is usually not possible. In this paper the bifurcations in the response of a rigid rotor in eccentric squeeze-film dampers are investigated. The values of the bearing parameter (B), gravity parameter (W) and spring parameter (S) are respectively fixed at 0.015, 0.05 and 0.3, while the unbalance parameter (U) is varied from 0.05 to 0.8. The results indicated that the rotor might lose its stability due to period-doubling and saddle node bifurcations. Chaotic response of the rotor was also observed for 0.365 < U < 0.367 and 0.381 < U < 0.392. The transitions to chaos in these two regimes were respectively via the period-doubling and type 3 intermittency routes. The levels of rotor unbalance where non-synchronous and chaotic motions were observed in this study are only an order of magnitude higher than the specified levels for rigid rotors. Such levels of unbalance may easily occur in practice due to in-service erosion or in the event of a partial or an entire blade loss.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150147
Author(s):  
Yo Horikawa

The bifurcations and chaos in a system of two coupled sigmoidal neurons with periodic input are revisited. The system has no self-coupling and no inherent limit cycles in contrast to the previous studies and shows simple bifurcations qualitatively different from the previous results. A symmetric periodic solution generated by the periodic input underdoes a pitchfork bifurcation so that a pair of asymmetric periodic solutions is generated. A chaotic attractor is generated through a cascade of period-doubling bifurcations of the asymmetric periodic solutions. However, a symmetric periodic solution repeats saddle-node bifurcations many times and the bifurcations of periodic solutions become complicated as the output gain of neurons is increasing. Then, the analysis of border collision bifurcations is carried out by using a piecewise constant output function of neurons and a rectangular wave as periodic input. The saddle-node, the pitchfork and the period-doubling bifurcations in the coupled sigmoidal neurons are replaced by various kinds of border collision bifurcations in the coupled piecewise constant neurons. Qualitatively the same structure of the bifurcations of periodic solutions in the coupled sigmoidal neurons is derived analytically. Further, it is shown that another period-doubling route to chaos exists when the output function of neurons is asymmetric.


Author(s):  
T. N. Shiau ◽  
J. S. Rao ◽  
J. R. Chang ◽  
Siu-Tong Choi

This paper is concerned with the dynamic behavior of geared rotor systems supported by squeeze film dampers, wherein coupled bending torsion vibrations occur. Considering the imbalance forces and gravity, it is shown that geared rotors exhibit chaotic behavior due to non linearity of damper forces. The route to chaos in such systems is established. In geared rotor systems, it is shown that torsional excitation can induce lateral vibrations. It is shown that squeeze film dampers can suppress large amplitudes of whirl arising out of torsional excitation.


2000 ◽  
Vol 68 (4) ◽  
pp. 670-674 ◽  
Author(s):  
G. L. Wen and ◽  
J. H. Xie

A nontypical route to chaos of a two-degree-of-freedom vibro-impact system is investigated. That is, the period-doubling bifurcations, and then the system turns out to the stable quasi-periodic response while the period 4-4 impact motion fails to be stable. Finally, the system converts into chaos through phrase locking of the corresponding four Hopf circles or through a finite number of times of torus-doubling.


1998 ◽  
Vol 120 (2) ◽  
pp. 397-404 ◽  
Author(s):  
L. San Andre´s ◽  
D. Lubell

Squeeze film dampers (SFDs) provide vibration attenuation and structural isolation to aircraft gas turbine engines which must be able to tolerate larger imbalances while operating above one or more critical speeds. Rotor-bearing-SFD systems are regarded in theory as highly nonlinear, showing jump phenomena and even chaotic behavior for sufficiently large levels of rotor imbalance. Yet, few experimental results of practical value have verified the analytical predictions. A test rig for measurement of the dynamic forced response of a three-disk rotor (45 kg) supported on two cylindrical SFDs is described. The major objective is to provide a reliable data base to validate and enhance SFD design practice and to allow a direct comparison with analytical models. The open-ends SFD are supported by four-bar centering structures, each with a stiffness of 3.5 MN/m. Measured synchronous responses to 9000 rpm due to various imbalances show the rotor-SFD system to be well damped with amplification factors between 1.6 and 2.1 while traversing cylindrical and conical modes critical speeds. The rotor amplitudes of motion are found to be proportional to the imbalances for the first mode of vibration, and the damping coefficients extracted compare reasonably well to predictions based on the full-film, open-ends SFD. Tight lip (elastomeric) seals contribute greatly to the overall damping of the test rig. Measured dynamic pressures at the squeeze film lands are well above ambient values with no indication of lubricant dynamic cavitation as simple theoretical models dictate. The measurements show absence of nonlinear behavior of the rotor-SFD apparatus for the range of imbalances tested.


2002 ◽  
Vol 12 (04) ◽  
pp. 859-867 ◽  
Author(s):  
V. SHEEJA ◽  
M. SABIR

We study the effect of linear dissipative forces on the chaotic behavior of coupled quartic oscillators with two degrees of freedom. The effect of quadratic Rayleigh dissipation functions, one with diagonal coefficients only and the other with nondiagonal coefficients as well are studied. It is found that the effect of Rayleigh Dissipation function with diagonal coefficients is to suppress chaos in the system and to lead the system to its equilibrium state. However, with a dissipation function with nondiagonal elements, other types of behaviors — including fixed point attractor, periodic attractors and even chaotic attractors — are possible even when there is no external driving. In such a system the route to chaos is through period-doubling bifurcations. This result contradicts the view that linear dissipation always causes decay of oscillations in oscillator models.


2009 ◽  
Vol 19 (02) ◽  
pp. 487-495 ◽  
Author(s):  
E. FREIRE ◽  
E. PONCE ◽  
J. ROS

Starting from previous analytical results assuring the existence of a saddle-node bifurcation curve of periodic orbits for continuous piecewise linear systems, numerical continuation is done to get some primary bifurcation curves for the piecewise linear Chua's oscillator in certain dimensionless parameter plane. The primary period doubling, homoclinic and saddle-node of periodic orbits' bifurcation curves are computed. A Belyakov point is detected in organizing the connection of these curves. In the parametric region between period-doubling, focus-center-limit cycle and homoclinic bifurcation curves, chaotic attractors coexist with stable nontrivial equilibria. The primary saddle-node bifurcation curve plays a leading role in this coexistence phenomenon.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fangyan Yang ◽  
Yongming Cao ◽  
Lijuan Chen ◽  
Qingdu Li

This paper reports a new bifurcation pattern observed in a Lorenz-type system. The pattern is composed of a main bifurcation route to chaos (n=1) and a sequence of sub-bifurcation routes with n=3,4,5,…,14 isolated sub-branches to chaos. When n is odd, the n isolated sub-branches are from a period-n limit cycle, followed by twin period-n limit cycles via a pitchfork bifurcation, twin chaotic attractors via period-doubling bifurcations, and a symmetric chaotic attractor via boundary crisis. When n is even, the n isolated sub-branches are from twin period-n/2 limit cycles, which become twin chaotic attractors via period-doubling bifurcations. The paper also shows that the main route and the sub-routes can coexist peacefully by studying basins of attraction.


1993 ◽  
Vol 03 (05) ◽  
pp. 1169-1176 ◽  
Author(s):  
E. H. ABED ◽  
H. O. WANG ◽  
J. C. ALEXANDER ◽  
A. M. A. HAMDAN ◽  
H.-C. LEE

Dynamic bifurcations, including Hopf and period-doubling bifurcations, are found to occur in a power system dynamic model recently employed in voltage collapse studies. The occurrence of dynamic bifurcations is ascertained in a region of state and parameter space linked with the onset of voltage collapse. The work focuses on a power system model studied by Dobson & Chiang [1989]. The presence of the dynamic bifurcations, and the resulting implications for dynamic behavior, necessitate a re-examination of the role of saddle node bifurcations in the voltage collapse phenomenon. The bifurcation analysis is performed using the reactive power demand at a load bus as the bifurcation parameter. It is determined that the power system model under consideration exhibits two Hopf bifurcations in the vicinity of the saddle node bifurcation. Between the Hopf bifurcations, i.e., in the "Hopf window," period-doubling bifurcations are found to occur. Simulations are given to illustrate the various types of dynamic behaviors associated with voltage collapse for the model. In particular, it is seen that an oscillatory transient may play a role in the collapse.


Sign in / Sign up

Export Citation Format

Share Document