scholarly journals Sequence of Routes to Chaos in a Lorenz-Type System

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fangyan Yang ◽  
Yongming Cao ◽  
Lijuan Chen ◽  
Qingdu Li

This paper reports a new bifurcation pattern observed in a Lorenz-type system. The pattern is composed of a main bifurcation route to chaos (n=1) and a sequence of sub-bifurcation routes with n=3,4,5,…,14 isolated sub-branches to chaos. When n is odd, the n isolated sub-branches are from a period-n limit cycle, followed by twin period-n limit cycles via a pitchfork bifurcation, twin chaotic attractors via period-doubling bifurcations, and a symmetric chaotic attractor via boundary crisis. When n is even, the n isolated sub-branches are from twin period-n/2 limit cycles, which become twin chaotic attractors via period-doubling bifurcations. The paper also shows that the main route and the sub-routes can coexist peacefully by studying basins of attraction.

2018 ◽  
Vol 28 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Yo Horikawa ◽  
Hiroyuki Kitajima ◽  
Haruna Matsushita

Bifurcations and chaos in a network of three identical sigmoidal neurons are examined. The network consists of a two-neuron oscillator of the Wilson–Cowan type and an additional third neuron, which has a simpler structure than chaotic neural networks in the previous studies. A codimension-two fold-pitchfork bifurcation connecting two periodic solutions exists, which is accompanied by the Neimark–Sacker bifurcation. A stable quasiperiodic solution is generated and Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation in a two-dimensional parameter space. The merging, splitting and crossing of the Arnold tongues are observed. Further, multiple chaotic attractors are generated through cascades of period-doubling bifurcations of periodic solutions in the Arnold tongues. The chaotic attractors grow and are destroyed through crises. Transient chaos and crisis-induced intermittency due to the crises are also observed. These quasiperiodic solutions and chaotic attractors are robust to small asymmetry in the output function of neurons.


1997 ◽  
Vol 07 (12) ◽  
pp. 2755-2771 ◽  
Author(s):  
M. Di Bernardo ◽  
E. Fossas ◽  
G. Olivar ◽  
F. Vasca

Period doubling route to chaos has been shown to occur in the voltage controlled DC/DC buck converter, both experimentally and numerically. A chaotic attractor was found at the end of the sequence, suddenly followed by an increase of its size. In this paper new secondary bifurcations and high periodic phenomena, coexisting with the main sequence are detected and analyzed over the same range of parameters. A(synchronous)-switching and stroboscopic maps, unstable orbits, bifurcation diagrams, invariant manifolds and basins of attraction are outlined. These tools are put together to reveal the dynamical richness of this nonsmooth system.


2000 ◽  
Vol 68 (4) ◽  
pp. 670-674 ◽  
Author(s):  
G. L. Wen and ◽  
J. H. Xie

A nontypical route to chaos of a two-degree-of-freedom vibro-impact system is investigated. That is, the period-doubling bifurcations, and then the system turns out to the stable quasi-periodic response while the period 4-4 impact motion fails to be stable. Finally, the system converts into chaos through phrase locking of the corresponding four Hopf circles or through a finite number of times of torus-doubling.


2011 ◽  
Vol 21 (09) ◽  
pp. 2695-2712 ◽  
Author(s):  
XIANYI LI ◽  
HAIJUN WANG

In this paper, a new Lorenz-type system with chaotic attractor is formulated. The structure of the chaotic attractor in this new system is found to be completely different from that in the Lorenz system or the Chen system or the Lü system, etc., which motivates us to further study in detail its complicated dynamical behaviors, such as the number of its equilibrium, the stability of the hyperbolic and nonhyperbolic equilibrium, the degenerate pitchfork bifurcation, the Hopf bifurcation and the local manifold character, etc., when its parameters vary in their space. The existence or nonexistence of homoclinic and heteroclinic orbits of this system is also rigorously proved. Numerical simulation evidences are also presented to examine the corresponding theoretical analytical results.


1999 ◽  
Vol 09 (02) ◽  
pp. 383-396 ◽  
Author(s):  
J.-M. MALASOMA ◽  
P. WERNY ◽  
C.-H. LAMARQUE

Numerical investigations of the global behavior of a model of the convective flow of a binary mixture in a porous medium are reported. We find a complex behavior characterized by the presence of coexisting periodic, quasiperiodic and chaotic attractors. Bifurcations of periodic solutions and routes to chaos via type-I intermittency and period-doubling bifurcations are described. Boundary crises and band merging crises have also been observed.


2004 ◽  
Author(s):  
Jawaid I. Inayat-Hussain ◽  
Njuki W. Mureithi

This work reports on a numerical study undertaken to investigate the imbalance response of a rigid rotor supported by squeeze-film dampers. Two types of damper configurations were considered, namely, dampers without centering springs, and eccentrically operated dampers with centering springs. For a rotor fitted with squeeze-film dampers without centering springs, the study revealed the existence of three regimes of chaotic motion. The route to chaos in the first regime was attributed to a sequence of period-doubling bifurcations of the period-1 (synchronous) rotor response. A period-3 (one-third subharmonic) rotor whirl orbit, which was born from a saddle-node bifurcation, was found to co-exist with the chaotic attractor. The period-3 orbit was also observed to undergo a sequence of period-doubling bifurcations resulting in chaotic vibrations of the rotor. The route to chaos in the third regime of chaotic rotor response, which occurred immediately after the disappearance of the period-3 orbit due to a saddle-node bifurcation, was attributed to a possible boundary crisis. The transitions to chaotic vibrations in the rotor supported by eccentric squeeze-film dampers with centering springs were via the period-doubling cascade and type 3 intermittency routes. The type 3 intermittency transition to chaos was due to an inverse period-doubling bifurcation of the period-2 (one-half subharmonic) rotor response. The unbalance response of the squeeze-film-damper supported rotor presented in this work leads to unique non-synchronous and chaotic vibration signatures. The latter provide some useful insights into the design and development of fault diagnostic tools for rotating machinery that operate in highly nonlinear regimes.


2002 ◽  
Vol 12 (04) ◽  
pp. 859-867 ◽  
Author(s):  
V. SHEEJA ◽  
M. SABIR

We study the effect of linear dissipative forces on the chaotic behavior of coupled quartic oscillators with two degrees of freedom. The effect of quadratic Rayleigh dissipation functions, one with diagonal coefficients only and the other with nondiagonal coefficients as well are studied. It is found that the effect of Rayleigh Dissipation function with diagonal coefficients is to suppress chaos in the system and to lead the system to its equilibrium state. However, with a dissipation function with nondiagonal elements, other types of behaviors — including fixed point attractor, periodic attractors and even chaotic attractors — are possible even when there is no external driving. In such a system the route to chaos is through period-doubling bifurcations. This result contradicts the view that linear dissipation always causes decay of oscillations in oscillator models.


2017 ◽  
Vol 27 (07) ◽  
pp. 1750100 ◽  
Author(s):  
J. Kengne ◽  
A. Nguomkam Negou ◽  
Z. T. Njitacke

We perform a systematic analysis of a system consisting of a novel jerk circuit obtained by replacing the single semiconductor diode of the original jerk circuit described in [Sprott, 2011a] with a pair of semiconductor diodes connected in antiparallel. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a control system with nonlinear velocity feedback. The stability of the (unique) fixed point, the local bifurcations, and the discrete symmetries of the model equations are discussed. The complex behavior of the system is categorized in terms of its parameters by using bifurcation diagrams, Lyapunov exponents, time series, Poincaré sections, and basins of attraction. Antimonotonicity, period doubling bifurcation, symmetry restoring crises, chaos, and coexisting bifurcations are reported. More interestingly, one of the key contributions of this work is the finding of various regions in the parameters’ space in which the proposed (“elegant”) jerk circuit experiences the unusual phenomenon of multiple competing attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). The basins of attraction of various coexisting attractors display complexity (i.e. fractal basins boundaries), thus suggesting possible jumps between coexisting attractors in experiment. Results of theoretical analyses are perfectly traced by laboratory experimental measurements. To the best of the authors’ knowledge, the jerk circuit/system introduced in this work represents the simplest electrical circuit (only a quadruple op amplifier chip without any analog multiplier chip) reported to date capable of four disconnected periodic and chaotic attractors for the same parameters setting.


2005 ◽  
Vol 15 (07) ◽  
pp. 2161-2177 ◽  
Author(s):  
V. L. MAISTRENKO ◽  
YU. L. MAISTRENKO ◽  
E. MOSEKILDE

This paper investigates different types of chaotic synchronization in a system of two coupled sine maps. Due to the bimodal nature of the individual map, there is a range of parameters in which two synchronized chaotic states coexist along the main diagonal. In certain parameter regions, various (regular or chaotic) asynchronous states coexist with the synchronized chaotic states, and the basins of attraction become quite complicated. We determine the regions of stability for the so-called principal cycles that arise through transverse period-doubling bifurcations of synchronized saddle cycles. Particular emphasis is paid to the occurrence of chaotic antisynchronization, the coexistence of antisynchronous chaotic states, and the presence of narrow regions of parameter space in which states of chaotic synchronization and antisynchronization exist simultaneously. For each of these cases we provide detailed pictures of the associated basin structures.


2012 ◽  
Vol 22 (10) ◽  
pp. 1230034
Author(s):  
JOHN ALEXANDER TABORDA ◽  
FABIOLA ANGULO ◽  
GERARD OLIVAR

Zero Average Dynamics (ZAD) control strategy has been developed, applied and widely analyzed in the last decade. Numerous and interesting phenomena have been studied in systems controlled by ZAD strategy. In particular, the ZAD-controlled buck converter has been a source of nonlinear and nonsmooth phenomena, such as period-doubling, merging bands, period-doubling bands, torus destruction, fractal basins of attraction or codimension-2 bifurcations. In this paper, we report a new bifurcation scenario found inside band-merging scenario of ZAD-controlled buck converter. We use a novel qualitative framework named Dynamic Linkcounter (DLC) approach to characterize chaotic attractors between consecutive crisis bifurcations. This approach complements the results that can be obtained with Bandcounter approaches. Self-similar substructures denoted as Complex Dynamic Links (CDLs) are distinguished in multiband chaotic attractors. Geometrical changes in multiband chaotic attractors are detected when the control parameter of ZAD strategy is varied between two consecutive crisis bifurcations. Linkcount subtracting staircases are defined inside band-merging scenario.


Sign in / Sign up

Export Citation Format

Share Document