Rethinking the Design of Presentation Slides: Creating Slides That Are Readily Comprehended

Author(s):  
Michael Alley ◽  
Harry Robertshaw

Presentation slides, when designed well, can significantly increase the amount of information that the audience comprehends. However, when the slide has type that can not be quickly read, the audience often gives up on the slide. Moreover, when the slide does not orient well, when the slide has too much information, or when the order of information on the slide is unclear, the audience can easily become confused. Given that these mistakes can prevent the audience from comprehending the presentation’s content, presenters should strive to format slides that can be quickly read, that effectively orient, that have a reasonable amount of information, and that have a clear order of information. Unfortunately, the slide formats that many engineering presenters use do not meet these goals. Presented in this paper are recommendations for the format of presentation slides—specifically, the typography, color, and layout of presentation slides (or overheads). An assumption for these recommendations is that the purpose of the presentation is to communicate technical information efficiently to the audience. Given that assumption, the goal of a slide’s typography is to have type that can be read as quickly as possible. To obtain that goal, this paper recommends a bold sans serif typestyle such as Arial that is at least 18 points. In regard to color, the most important goal is to have colors that can be clearly distinguished from each other. To obtain that goal, this paper recommends either a dark color against a light background or a light color against a dark background. In regard to layout, the goal is to have a slide design for which the audience can quickly discern the point of the slide and then can divide attention between the presenter and the slide as the presenter discusses the slide. To obtain that goal, this paper recommends the national laboratory design of a short sentence headline supported primarily by images. Other reasons exist for choosing this national lab design. Although this paper focuses on how readily that slides following this national lab design can be comprehended, the paper does direct the reader to references that discuss two other reasons for using this national laboratory design: (1) how well the slide design helps the audience remember details, and (2) how persuasive the slide design is.

Author(s):  
Qutaiba M. Saleh ◽  
Edward C. Hensel ◽  
Nathan C. Eddingsaas ◽  
Risa J. Robinson

This work investigated the effects of manufacturing variations including coil resistance, initial pod mass, and e-liquid color on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples of pods were used until failure (where e-liquid was consumed, and coil resistance increased to high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass ranged between 0.89 to 1.14 [], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime with light color e-liquid was (mean) = 149, (standard deviation) = 10.7 puffs while pods with dark color e-liquid was = 185, = 22.7 puffs with a difference of ~36 puffs (p <0.001). Total mass of e-liquid consumed until coil failure was = 1.93, = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods) was = 0.0123, = 0.0003 [g]. During usage, TPM yield per puff of pods with light color e-liquid was relatively steady while it was continuously decreasing for pods with dark e-liquid. Coil lifetime and TPM yield per puff were not correlated with either variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod is an important factor in causing coil failure. Small bits of the degraded coil could be potentially introduced to the aerosol. There is a potential correlation of e-liquid color with both coil lifetime and TPM yield per puff. Change of e-liquid color might have been a result of oxidation which changed some nicotine into nicotyrine.


2012 ◽  
Vol 34 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Paulo Cesar Hilst ◽  
Denise Cunha Fernandes dos Santos Dias ◽  
Eveline Mantovani Alvarenga ◽  
Bruna Luiza de Souza

Coffee seeds have slow and irregular germination, losing fast their viability during storage, and the standard germination test of these seeds requires at least 30 days. Besides, the results may not reflect the actual physiological quality of these seeds. The objective of this work was to develop a fast and practical test for evaluating the viability of coffee seeds, which is based on the interpretation of different color hues of exudates from seeds. Coffee seeds of the cultivar Catuai 44 from six lots were submitted to germination, accelerated aging, and electrical conductivity tests. In the exudates color hue test, coffee seeds without the parchment and the silvery pellicle (four replications of 10 seeds each) were distributed on top of paper towels moistened and then maintained into a germinator, at 25 ºC for 24, 48, 72, 96, and 120 h. Three classes of color hues were established: colorless, light color hue, and dark color hue, assigning the values of 0, 1, and 3, for each class, respectively. The proposed exudates color hue test can be recommended for the fast assessment of viability for coffee seeds. The most promising results were obtained for seeds with 12% moisture content, after imbibition periods of 72, 96, and 120 h; and with 30% moisture content, after imbibition periods of 72 and 120 h.


Sign in / Sign up

Export Citation Format

Share Document