A Scalable Silicon Micro-Reactor for Preferential CO Oxidation With an Integrated Platinum Heater

Author(s):  
Amit Dhingra ◽  
Hong G. Im ◽  
Sujit Srinivas ◽  
Erdogan Gulari

Recent advances in PEM fuel cell systems have demonstrated their role in the production of clean and efficient power. However, due to complexities and safety concerns in the storage and transport of hydrogen, development of on-board fuel processing of hydrocarbon into hydrogen is being considered a critical issue in the success of the fuel cell technology in transportation application. In this paper, a novel concept of scalable silicon micro-reactor with an integrated platinum heater is developed for preferential CO oxidation. The performance of the micro-reactor is assessed and compared to a packed-bed reactor model. Complementary experimental and modeling efforts are made to identify the optimal thermal design parameters. It is demonstrated that the silicon micro-reactors successfully achieves the objectives of scalability without suffering from loss of efficiency due to the mass transfer limitations.

2016 ◽  
Vol 41 (4) ◽  
pp. 2144-2153 ◽  
Author(s):  
Lindelani Q. Qwabe ◽  
Venkata D.B.C. Dasireddy ◽  
Sooboo Singh ◽  
Holger B. Friedrich

2015 ◽  
Vol 17 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Kiran D. Bhuyar ◽  
Sanvidhan G. Suke ◽  
S.D. Dawande

Abstract An up-flow anaerobic packed bed (UAPB) bioreactor has been designed on a laboratory-scale and used for treatment of domestic milk wastewater (MWW). The UAPB bioreactor was operated under mesophilic temperature (37-45°C) and reactor performance evaluated at various organic loading rates of MWW effluent at hydraulic retention times (HRT) of 1, 2, and 3 d based on the removal of organic matter COD, BOD, SS, pH changes and biogas production. The kinetic parameters were estimated using the experimental data to develop a reactor model. Empirical relations were generated for the characteristics like COD, BOD, and SS using modeling equations. This study proved that the UAPB reactor performance is excellent for treating domestic MWW and easily biodegradable dairy wastewater influent. Hence, this system can operate at low costs, making it suited for use in the developing countries and rural areas.


2003 ◽  
Vol 42 (8) ◽  
pp. 1662-1673 ◽  
Author(s):  
Attasak Jaree ◽  
Robert R. Hudgins ◽  
Hector M. Budman ◽  
Peter L. Silveston ◽  
Vladimir Z. Yakhnin ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Lali ◽  
Felix-Aron Pahner ◽  
Rüdiger Lange

This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction ofα-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.


2010 ◽  
Vol 387 (1-2) ◽  
pp. 215-223 ◽  
Author(s):  
Hongliang Li ◽  
Xinhai Yu ◽  
Shan-Tung Tu ◽  
Jinyue Yan ◽  
Zhengdong Wang

Author(s):  
John R. Izzo ◽  
Aldo A. Peracchio ◽  
Wilson K. S. Chiu

A numerical model is developed to study the performance of an integrated tubular fuel reformer and solid oxide fuel cell (SOFC) system. The model is used to study how the physical dimensions of the reformer, gas composition and the species flow rates of a methane feed stream undergoing autothermal reforming (ATR) affect the performance of an SOFC. The temperature in the reformer changes significantly due to the heat of reaction, and the reaction rates are very sensitive to the temperature and species concentrations. Therefore, it is necessary to couple the heat and mass transfer to accurately model the species conversion of the reformate stream. The reactions in the SOFC contribute much less to the temperature distribution than in the reformer and therefore the heat transfer in the SOFC is not necessary to model. A packed bed reactor is used to describe the reformer, where the chemical mechanism and kinetics are taken from the literature for nickel catalyst on a gamma alumina support. Heat transfer in the reformer’s gas and solid catalyst phases are coupled while the gas phase in the SOFC is at a uniform temperature. The SOFC gas species are modeled using a plug flow reactor. The models are in good agreement with experimental data. It is observed that the reformer temperature decreases with an increase in the reformer inlet water-to-fuel ratio and there is a slight decrease in the voltage of the SOFC from higher water content but an increase in limiting current density from a higher hydrogen production. The numerical results show that the flow rates and reformer length are critical design parameters because if not properly designed they can lead to incomplete conversion of the methane fuel to hydrogen in the reformer, which has the greatest impact on the SOFC performance in the integrated ATR reformer and SOFC system.


1988 ◽  
Vol 43 (8) ◽  
pp. 2289-2294 ◽  
Author(s):  
E. Wicke ◽  
H.U. Onken

Sign in / Sign up

Export Citation Format

Share Document