Electrostatic Capture of Airborne Nanoparticles in Swirling Flows for Bio-MEMS Applications

Author(s):  
Jaesung Jang ◽  
Demir Akin ◽  
Kwan Seop Lim ◽  
Michael R. Ladisch ◽  
Rashid Bashir

Motivated by capture and detection of airborne biological agents in real time, we present the electrostatic capture of 100nm diameter polystyrene nanoparticles as a model system under swirling gas flows in a homemade particle collector having the forward outlet. The particle collector has five small positive electrodes on the bottom and one large grounded electrode on the top. The particles coming into the collector are slowed down during their swirling and stay in the collector before leaving. Particles captured on the center electrode of this collector were much less than those on the surrounding four electrodes and 10 - 25% of the particles with negative charges entering this collector were captured on the bottom electrodes at a flow rate of 1.1 l/min and an applied potential of 2 kV. Using a commercial CFD code FLUENT, we simulated the effects of the different types of collector outlet configurations and flow rates on the particles' trajectories, velocities, and travel times inside the collector. We also present the highest particle capture position inside the collector in those different configurations. The forward outlet configuration is the most favorable to particle capture among the tested configurations in terms of particles' minimum achievable velocities and their travel times at a flow rate of 1.1 l/min. This collector is well adaptable to integration with micro resonator devices and can be used for real-time monitoring of bioaerosols.

Author(s):  
Bernardo Breve ◽  
Stefano Cirillo ◽  
Mariano Cuofano ◽  
Domenico Desiato

AbstractGestural expressiveness plays a fundamental role in the interaction with people, environments, animals, things, and so on. Thus, several emerging application domains would exploit the interpretation of movements to support their critical designing processes. To this end, new forms to express the people’s perceptions could help their interpretation, like in the case of music. In this paper, we investigate the user’s perception associated with the interpretation of sounds by highlighting how sounds can be exploited for helping users in adapting to a specific environment. We present a novel algorithm for mapping human movements into MIDI music. The algorithm has been implemented in a system that integrates a module for real-time tracking of movements through a sample based synthesizer using different types of filters to modulate frequencies. The system has been evaluated through a user study, in which several users have participated in a room experience, yielding significant results about their perceptions with respect to the environment they were immersed.


2021 ◽  
Vol 4 (2) ◽  
pp. 36
Author(s):  
Maulshree Singh ◽  
Evert Fuenmayor ◽  
Eoin Hinchy ◽  
Yuansong Qiao ◽  
Niall Murray ◽  
...  

Digital Twin (DT) refers to the virtual copy or model of any physical entity (physical twin) both of which are interconnected via exchange of data in real time. Conceptually, a DT mimics the state of its physical twin in real time and vice versa. Application of DT includes real-time monitoring, designing/planning, optimization, maintenance, remote access, etc. Its implementation is expected to grow exponentially in the coming decades. The advent of Industry 4.0 has brought complex industrial systems that are more autonomous, smart, and highly interconnected. These systems generate considerable amounts of data useful for several applications such as improving performance, predictive maintenance, training, etc. A sudden influx in the number of publications related to ‘Digital Twin’ has led to confusion between different terminologies related to the digitalization of industries. Another problem that has arisen due to the growing popularity of DT is a lack of consensus on the description of DT as well as so many different types of DT, which adds to the confusion. This paper intends to consolidate the different types of DT and different definitions of DT throughout the literature for easy identification of DT from the rest of the complimentary terms such as ‘product avatar’, ‘digital thread’, ‘digital model’, and ‘digital shadow’. The paper looks at the concept of DT since its inception to its predicted future to realize the value it can bring to certain sectors. Understanding the characteristics and types of DT while weighing its pros and cons is essential for any researcher, business, or sector before investing in the technology.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 522
Author(s):  
Qiu-Yun Huang ◽  
Ai-Peng Jiang ◽  
Han-Yu Zhang ◽  
Jian Wang ◽  
Yu-Dong Xia ◽  
...  

As the leading thermal desalination method, multistage flash (MSF) desalination plays an important role in obtaining freshwater. Its dynamic modeling and dynamic performance prediction are quite important for the optimal control, real-time optimal operation, maintenance, and fault diagnosis of MSF plants. In this study, a detailed mathematical model of the MSF system, based on the first principle and its treatment strategy, was established to obtain transient performance change quickly. Firstly, the whole MSF system was divided into four parts, which are brine heat exchanger, flashing stage room, mixed and split modulate, and physical parameter modulate. Secondly, based on mass, energy, and momentum conservation laws, the dynamic correlation equations were formulated and then put together for a simultaneous solution. Next, with the established model, the performance of a brine-recirculation (BR)-MSF plant with 16-stage flash chambers was simulated and compared for validation. Finally, with the validated model and the simultaneous solution method, dynamic simulation and analysis were carried out to respond to the dynamic change of feed seawater temperature, feed seawater concentration, recycle stream mass flow rate, and steam temperature. The dynamic response curves of TBT (top brine temperature), BBT (bottom brine temperature), the temperature of flashing brine at previous stages, and distillate mass flow rate at previous stages were obtained, which specifically reflect the dynamic characteristics of the system. The presented dynamic model and its treatment can provide better analysis for the real-time optimal operation and control of the MSF system to achieve lower operational cost and more stable freshwater quality.


1997 ◽  
Vol 30 (8) ◽  
pp. 1121-1126
Author(s):  
Jean-Marc Morin ◽  
Raymond. Fevre

2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Dipti Chavan ◽  
Aniket Kamble ◽  
Aditya Khadsare ◽  
Vaibhav Chougule ◽  
Vaibhav Chougule

Electronics and communication is the most important field. In this paper, we can describe how much safety is in the Automobile industry. In this paper, we are using uno-Arduino. The different types of sensors facilities are also provided using key points. The different sensors are provided to check visitor count. In this system, we can monitor and control all the safety precautions their one IoT web platform. This helps in the proper utilization of drivers and helps in avoiding accidents. This paper can be implemented in any two-wheelers, heavily loaded trucks, small SUVs, compact cars. In our paper, the electronics machine/components will be automatically working with using of Arduino program. The proposed wireless sensor platform is an attempt to develop more safety devices that can be used in multiple areas such as homes, schools, and public utilities to reduce accidents. This Advanced Driver Assists system will provide real-time accident detections and monitoring usage information that helps in real-time by using GSM, GPS, and sensors.


Author(s):  
Mohd. Fua’ad Rahmat ◽  
Wee Lee Yaw

This paper discussed the electrostatic sensors that have been constructed for real–time mass flow rate measurement of particle conveying in a Pneumatic pipeline. Many industrial processes require continuous, smooth, and consistent delivery of solids materials with a high accuracy of controlled flow rate. This requirement can only be achieved by installing a proper measurement system. Electrostatic sensor offers the most inexpensive and simplest means of measuring solids flows in pipes. Key words: Electrostatic sensor, cross-correlation, peripheral velocity


The purpose of this work is to develop a UJSON web technology with C# application to analyze the student data in real-ime. Execute continuous requests on JSON streaming data based on advanced technologies for parallel streaming computing, suitable for solving analytic problems and calculation of metrics in real-time. The developed management information system in this research work designed to filtering event flow, building an event flow as a query result, grouping and aggregation of events, and creating window semantics. For testing the proposed work, several queries were selected that implement aggregation with different types of semantic windows (Steps, Slides). Testing was done locally and on education moodle clusters. It was used 4 types of configurations 2, 4, 8, and 16 computing nodes. Based on the obtained results, scalability is noticeable with an increase in the number of nodes. The updated functions of the proposed UJSON could improve the construction of parallel flow systems and data processing. The developed approach based on modern and advanced parallel flow technologies for output calculations considering the pros and cons of various approaches found in the current era.


Sign in / Sign up

Export Citation Format

Share Document