Effect of Inertia on the Stability of Film Casting of Viscoelastic Fluids

2006 ◽  
Author(s):  
R. German ◽  
R. E. Khayat

The influence of inertia on the stability of isothermal film casting of viscoelastic fluids is examined using a Phan-Thien and Tanner rheological model. The linear stability analysis for two-dimensional disturbances is carried out. The numerical results indicate that the flow can have single or double critical draw ratio depending on the model parameter. While in the former case the flow is stable below and unstable above a critical draw ratio, in the latter case the flow is stable below the lower and above the upper critical draw ratio and unstable between the two values. The inertia is found to have a stabilizing effect on the flow. It is also found that there is a region of Deborah number, where the inertia has a stronger stabilizing effect on stability of flow than elsewhere.

2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


2000 ◽  
Vol 418 ◽  
pp. 213-229 ◽  
Author(s):  
CARLOS HÄRTEL ◽  
FREDRIK CARLSSON ◽  
MATTIAS THUNBLOM

Results are presented from a linear-stability analysis of the flow at the head of two-dimensional gravity-current fronts. The analysis was undertaken in order to clarify the instability mechanism that leads to the formation of the complex lobe-and-cleft pattern which is commonly observed at the leading edge of gravity currents propagating along solid boundaries. The stability analysis concentrates on the foremost part of the front, and is based on direct numerical simulation data of two-dimensional lock-exchange flows which are described in the companion paper, Härtel et al. (2000). High-order compact finite differences are employed to discretize the stability equations which results in an algebraic eigenvalue problem for the amplification rate, that is solved in an iterative fashion. The analysis reveals the existence of a vigorous linear instability that acts in a localized way at the leading edge of the front and originates in an unstable stratification in the flow region between the nose and stagnation point. It is shown that the amplification rate of this instability as well as its spanwise length scale depend strongly on Reynolds number. For validation, three-dimensional direct numerical simulations of the early stages of the frontal instability are performed, and close agreement with the results from the linear-stability analysis is demonstrated.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2019 ◽  
Vol 9 (22) ◽  
pp. 4840
Author(s):  
Yue Chen

This paper starts with a generalized Burton, Cabrera and Frank (BCF) model by considering the energetic contribution of the adjacent terraces to the step chemical potential. We use the linear stability analysis of the quasistatic free-boundary problem for a two-dimensional step separated by broad terraces to study the step-meandering instabilities. The results show that the equilibrium adatom coverage has influence on the morphological instabilities.


2002 ◽  
Author(s):  
Leslie Ng ◽  
Richard Rand

We investigate the effect of nonlinearites on a parametrically excited ordinary differential equation whose linearization exhibits the phenomena of coexistence. The differential equation studied governs the stability mode of vibration in an unforced conservative two degree of freedom system used to model the free vibrations of a thin elastica. Using perturbation methods, we show that at parameter values corresponding to coexistence, nonlinear terms can cause the origin to become nonlinearly unstable, even though linear stability analysis predicts the origin to be stable. We also investigate the bifurcations associated with this instability.


Horvath, Petrov, Scott and Showalter (1993) have shown that isothermal reaction-diffusion fronts with cubic autocalysis are linearly unstable to two-dimensional disturbances if the ratio, δ , of the diffusion coefficient of the reactant to that of the autocatalyst, is sufficiently large. However, they were only able to obtain an analytic expression for the growth rate by assuming an infinitely thin reaction zone, which is a poor approximation for cubic autocatalysis. We have carried out a linear stability analysis of such fronts with a finite reaction rate, and find that the critical δ for instability is unchanged, but the range of unstable wavenumbers is larger and increases rather than decreases with δ .


Sign in / Sign up

Export Citation Format

Share Document