A Fast Method for Conjugate Heat Transfer Analysis of Centrifugal Compressor

Author(s):  
Vai-Man Lei ◽  
Tomoki Kawakubo

The capability to calculate impeller temperature distribution is important to the life estimation of a centrifugal compressor. Three dimensional conjugate heat transfer (3D CHT) analysis with a high fidelity flow solver has become an indispensable tool for this class of problem. However, the application of 3D CHT analysis in the preliminary design of centrifugal compressor, which may involve the rapid evaluation of a large number of different configurations, is limited by the computation resource and setup time requirement. This paper presents a method of conjugate heat transfer analysis for centrifugal compressor design that requires significantly less computation power and setup time. The method, which consists of a one-dimensional flow model of the gas path and an axisymmetric CHT/flow solver, has been evaluated with data from 3D CHT analysis and experiment. Good agreement in impeller temperature distribution, as well as in impeller temperature trends due to changes in operating condition are obtained. To demonstrate the application of this method, various strategies to lower the impeller temperature are evaluated and discussed.

Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane (HPV) equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side, while the leading edge (LE) is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-averaged Navier–Stokes simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and HPVs are then investigated, considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first in which hot spot and swirl core are aligned with passage; and the second in which they are aligned with the LE. Comparisons between metal temperature distributions obtained from conjugate heat transfer (CHT) simulations are performed, evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The LE aligned configuration is determined to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage-aligned case. A strong sensitivity to both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2017 ◽  
Vol 44 (4) ◽  
pp. 411-416
Author(s):  
Hyunsung Jang ◽  
Namkoo Ha ◽  
Seungha Lee ◽  
Taekyu Choi ◽  
Minah Kim

Author(s):  
Yoji Okita ◽  
Shigemichi Yamawaki

A fluid-solid conjugate solver has been newly developed and applied to an actual engine disk system. Most of the currently available conjugate solvers lack the special thermal modeling for turbomachinery disk system applications. In the present new code, these special models are implemented to expand the applicability of the conjugate method and to reduce the required computational resources. Most of the conjugate analysis work so far were limited to the axisymmetric framework. However, the actual disk system includes several non-axisymmetric components which inevitably affect the local heat transfer phenomena. This paper presents 3D conjugate analysis of a single stage high pressure turbine rotor-stator disk system to assess these three-dimensional effects. The predicted temperatures shows good agreement with measured data. The calculated results revealed the three-dimensional analysis is crucial to predict the correct heat transfer field which is especially important in transient situations.


Author(s):  
James D. Heidmann ◽  
Alain J. Kassab ◽  
Eduardo A. Divo ◽  
Franklin Rodriguez ◽  
Erlendur Steinthorsson

A conjugate heat transfer solver has been developed and applied to a realistic film-cooled turbine vane for a variety of blade materials. The solver used for the fluid convection part of the problem is the Glenn-HT general multiblock heat transfer code. The solid conduction module is based on the Boundary Element Method (BEM), and is coupled directly to the flow solver. A chief advantage of the BEM method is that no volumetric grid is required inside the solid — only the surface grid is needed. Since a surface grid is readily available from the fluid side of the problem, no additional gridding is required. This eliminates one of the most time consuming elements of the computation for complex geometries. Two conjugate solution examples are presented — a high thermal conductivity Inconel nickel-based alloy vane case and a low thermal conductivity silicon nitride ceramic vane case. The solutions from the conjugate analyses are compared with an adiabatic wall convection solution. It is found that the conjugate heat transfer cases generally have a lower outer wall temperature due to thermal conduction from the outer wall to the plenum. However, some locations of increased temperature are seen in the higher thermal conductivity Inconel vane case. This is a result of the fact that film cooling is a two-temperature problem, which causes the direction of heat flux at the wall to change over the outer surface. Three-dimensional heat conduction in the solid allows for conduction heat transfer along the vane wall in addition to conduction from outer to inner wall. These effects indicate that the conjugate heat transfer in a complicated geometry such as a film-cooled vane is not governed by simple one-dimensional conduction from the vane surface to the plenum surface, especially when the effects of coolant injection are included.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

Abstract This paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

AbstractThis paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


2021 ◽  
Vol 11 (21) ◽  
pp. 9806
Author(s):  
Brayan L. Pérez Escobar ◽  
Germán Pérez Hernández ◽  
Arturo Ocampo Ramírez ◽  
Lizeth Rojas Blanco ◽  
Laura L. Díaz Flores ◽  
...  

In this paper, the gradient temperature and the thermomechanical stresses of a photovoltaic panel has been studied with and without heatsink. For this purpose, a three-dimensional analysis was carried out. Accordingly, a heat transfer analysis was developed. The numerical results show a cooling close to 26.7% with the proposed triangle fins compared with the rectangular fins studied before by another author, and the temperature distribution was determined. With this information, the stress analysis was carried out in order to find the effect on the panel due to the thermomechanical stresses. The aluminium frame was restricted to move freely. The resulting stresses field established the magnitude of the alternative stresses, resulting in a 6.7% drop compared with a reference panel. The guidelines of IEC 61215 have to be take into account. Due to the results obtained, the use of this kind of system in desert conditions is desirable because of its high operational temperature and due to the increase in heat transfer by the fins.


Sign in / Sign up

Export Citation Format

Share Document